BZOJ.5092.[Lydsy1711月赛]分割序列(高维前缀和)
\(Description\)

\(Solution\)
首先处理\(a_i\)的前缀异或和\(s_i\)。那么在对于序列\(a_1,...,a_n\),在\(i\)位置处分开的价值为:\(s_i+s_i\ ^{\wedge}s_n\)。
虽然有个加,但依旧可以考虑按位计算。如果\(s_n\)的第\(k\)位为\(1\),那\(s_i\)的第\(k\)位为\(0\)或是\(1\)贡献都是\(2^k\)(贡献即\(s_i+s_i\ ^{\wedge}s_n\)在第\(k\)位上是否为\(1\));如果\(s_n\)的第\(k\)位为\(0\),那么\(s_i\)第\(k\)位为\(0\)则贡献为\(0\),为\(1\)则贡献为\(2*2^k\)。
\(n\)就是指我们当前处理的前缀是\(a[1...n]\)。然后从高到低枚举每一位\(k\),如果\(s_n\)在这一位为\(1\),显然答案一定可以得到\(2^k\)的贡献;否则\(s_n\)在这一位为\(0\),我们应尽量让分割位置\(i\)满足\(s_i\)在第\(k\)位为\(1\),也就是找一个\(n\)前面的位置\(i\)满足\(s_i\)在第\(k\)位为\(1\),如果找得到,答案就可以得到\(2^{k+1}\)的贡献,并限制了\(s_i\)的第\(k\)位为\(1\)。
继续枚举更低位\(k'\)时,在第二种情况\(s_i\)不仅要满足\(s_i\)在第\(k'\)位为\(1\),还要满足之前的第\(k\)位为\(1\),也就是找是否存在\(s_i\)第\(k,k'\)位同时为\(1\)的\(n\)前面的位置\(i\)。
之后同理。
也就是说我们要求是否存在\(i\leq n\),\(s_i\)的第\(k\)位为\(1\)且前\(k\)位都满足之前的限制(某些位必须为\(1\))。
不妨去求,第\(k\)位为\(1\)且满足限制的最靠前的位置\(i\),判断是否有\(i\leq n\)。
因为限制就是某些位必须为\(1\),其它位任意,也就是超集。所以用高维前缀和维护满足某种限制的集合中,最靠前的位置就可以了。
复杂度\(O(2^kk)\)。
//6576kb 1748ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<20)+5;
int s[300005],f[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
static int pw[30];
pw[0]=1;
for(int i=1; i<=21; ++i) pw[i]=pw[i-1]<<1;
int n=read(),mx=0;
memset(f,0x3f,sizeof f);
for(int i=1,t; i<=n; ++i)
s[i]=s[i-1]^read(), mx=std::max(mx,s[i]), f[s[i]]=std::min(f[s[i]],i);
int bit=1;
while(pw[bit]<=mx) ++bit;
for(int i=0,lim=1<<bit; i<bit; ++i)
for(int s=0; s<lim; ++s)
if(!(s&pw[i])) f[s]=std::min(f[s],f[s|pw[i]]);
for(int i=1; i<=n; ++i)
{
int ans=0,t=0;
for(int j=bit-1; ~j; --j)
if(s[i]&pw[j]) ans|=pw[j];
else if(f[t|pw[j]]<=i) t|=pw[j], ans+=pw[j+1];//+= not |=...
printf("%d\n",ans);
}
return 0;
}
BZOJ.5092.[Lydsy1711月赛]分割序列(高维前缀和)的更多相关文章
- bzoj 5092 [Lydsy1711月赛]分割序列——高维前缀和
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5092 套路地弄一个前缀异或和,就变成 f[ i ]=max_{j=0}^{i} { s[ j ...
- bzoj 5092: [Lydsy1711月赛]分割序列
5092: [Lydsy1711月赛]分割序列 Time Limit: 5 Sec Memory Limit: 256 MBSubmit: 219 Solved: 100[Submit][Stat ...
- bzoj 5092 [Lydsy1711月赛]分割序列 贪心高维前缀和
[Lydsy1711月赛]分割序列 Time Limit: 5 Sec Memory Limit: 256 MBSubmit: 213 Solved: 97[Submit][Status][Dis ...
- BZOJ:5092 [Lydsy1711月赛]分割序列(贪心&高维前缀和)
Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b _2 xor...xor ...
- BZOJ5092:[Lydsy1711月赛]分割序列(贪心,高维前缀和)
Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b_2 xor...xor b ...
- bzoj 5092 分割序列 —— 高维前缀和
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5092 首先,处理出异或前缀和 s[i],i 位置的答案就是 s[j] + s[j]^s[i] ...
- bzoj 5094 [Lydsy1711月赛]硬盘检测 概率dp
[Lydsy1711月赛]硬盘检测 Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 273 Solved: 75[Submit][Status][Dis ...
- bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 245 Solved: 128[Submit][Status][D ...
- BZOJ 5093[Lydsy1711月赛]图的价值 线性做法
博主曾更过一篇复杂度为$O( k· \log k)$的多项式做法在这里 惊闻本题有$ O(k)$的神仙做法,说起神仙我就想起了于是就去学习了一波 幂与第二类斯特林数 推导看这里 $$ x^k=\sum ...
随机推荐
- LOJ#2553 暴力写挂
题意:给定两棵树T1,T2,求d1[x] + d1[y] - d1[lca1(x, y)] - d2[lca2(x, y)]的最大值. 解:考虑把上面这个毒瘤东西化一下.发现它就是T1中x,y到根的路 ...
- apache http跳转到https代码
<VirtualHost *:> ServerAdmin webmasterexample.com DocumentRoot "/mnt/www/" ServerNam ...
- 深入理解pthread_cond_wait、pthread_cond_signal
===============================man pthread_cond_wait的解释========================== LINUX环境下多线程编程肯定会遇到 ...
- pandas常用函数之shift
shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会 ...
- 强化学习Q-Learning算法详解
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...
- java Ajax跨域请求COOKIE无法带上的解决办法
1.web.xml加入以下节点,,一定放在第一个filter <!--目录下所有文件可以跨域Begin--> <filter> <filter-name>CorsF ...
- 第九节:JWT简介和以JS+WebApi为例基于JWT的安全校验
一. 简介 1. 背景 传统的基于Session的校验存在诸多问题,比如:Session过期.服务器开销过大.不能分布式部署.不适合前后端分离的项目. 传统的基于Token的校验需要存储Key-Val ...
- jQuery AJAX 方法 success()后台传来的4种数据
JAVA中的四种JSON解析方式详解 jQuery AJAX 方法 success()后台传来的4种数据 1.后台返回一个页面 js代码 /**(1)用$("#content-wrapper ...
- Mysql -- 外键的变种 三种关系
一.介绍 因为有foreign key的约束, 使得两张表形成了三种关系 多对一 多对多 一对一 二.如果找出两张表之间的关系 #.先站在左表的角度去找 是否左表的多条记录可以对应右 ...
- LuoGu P4996 咕咕咕
题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...