BZOJ.5092.[Lydsy1711月赛]分割序列(高维前缀和)
\(Description\)
\(Solution\)
首先处理\(a_i\)的前缀异或和\(s_i\)。那么在对于序列\(a_1,...,a_n\),在\(i\)位置处分开的价值为:\(s_i+s_i\ ^{\wedge}s_n\)。
虽然有个加,但依旧可以考虑按位计算。如果\(s_n\)的第\(k\)位为\(1\),那\(s_i\)的第\(k\)位为\(0\)或是\(1\)贡献都是\(2^k\)(贡献即\(s_i+s_i\ ^{\wedge}s_n\)在第\(k\)位上是否为\(1\));如果\(s_n\)的第\(k\)位为\(0\),那么\(s_i\)第\(k\)位为\(0\)则贡献为\(0\),为\(1\)则贡献为\(2*2^k\)。
\(n\)就是指我们当前处理的前缀是\(a[1...n]\)。然后从高到低枚举每一位\(k\),如果\(s_n\)在这一位为\(1\),显然答案一定可以得到\(2^k\)的贡献;否则\(s_n\)在这一位为\(0\),我们应尽量让分割位置\(i\)满足\(s_i\)在第\(k\)位为\(1\),也就是找一个\(n\)前面的位置\(i\)满足\(s_i\)在第\(k\)位为\(1\),如果找得到,答案就可以得到\(2^{k+1}\)的贡献,并限制了\(s_i\)的第\(k\)位为\(1\)。
继续枚举更低位\(k'\)时,在第二种情况\(s_i\)不仅要满足\(s_i\)在第\(k'\)位为\(1\),还要满足之前的第\(k\)位为\(1\),也就是找是否存在\(s_i\)第\(k,k'\)位同时为\(1\)的\(n\)前面的位置\(i\)。
之后同理。
也就是说我们要求是否存在\(i\leq n\),\(s_i\)的第\(k\)位为\(1\)且前\(k\)位都满足之前的限制(某些位必须为\(1\))。
不妨去求,第\(k\)位为\(1\)且满足限制的最靠前的位置\(i\),判断是否有\(i\leq n\)。
因为限制就是某些位必须为\(1\),其它位任意,也就是超集。所以用高维前缀和维护满足某种限制的集合中,最靠前的位置就可以了。
复杂度\(O(2^kk)\)。
//6576kb 1748ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<20)+5;
int s[300005],f[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
static int pw[30];
pw[0]=1;
for(int i=1; i<=21; ++i) pw[i]=pw[i-1]<<1;
int n=read(),mx=0;
memset(f,0x3f,sizeof f);
for(int i=1,t; i<=n; ++i)
s[i]=s[i-1]^read(), mx=std::max(mx,s[i]), f[s[i]]=std::min(f[s[i]],i);
int bit=1;
while(pw[bit]<=mx) ++bit;
for(int i=0,lim=1<<bit; i<bit; ++i)
for(int s=0; s<lim; ++s)
if(!(s&pw[i])) f[s]=std::min(f[s],f[s|pw[i]]);
for(int i=1; i<=n; ++i)
{
int ans=0,t=0;
for(int j=bit-1; ~j; --j)
if(s[i]&pw[j]) ans|=pw[j];
else if(f[t|pw[j]]<=i) t|=pw[j], ans+=pw[j+1];//+= not |=...
printf("%d\n",ans);
}
return 0;
}
BZOJ.5092.[Lydsy1711月赛]分割序列(高维前缀和)的更多相关文章
- bzoj 5092 [Lydsy1711月赛]分割序列——高维前缀和
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5092 套路地弄一个前缀异或和,就变成 f[ i ]=max_{j=0}^{i} { s[ j ...
- bzoj 5092: [Lydsy1711月赛]分割序列
5092: [Lydsy1711月赛]分割序列 Time Limit: 5 Sec Memory Limit: 256 MBSubmit: 219 Solved: 100[Submit][Stat ...
- bzoj 5092 [Lydsy1711月赛]分割序列 贪心高维前缀和
[Lydsy1711月赛]分割序列 Time Limit: 5 Sec Memory Limit: 256 MBSubmit: 213 Solved: 97[Submit][Status][Dis ...
- BZOJ:5092 [Lydsy1711月赛]分割序列(贪心&高维前缀和)
Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b _2 xor...xor ...
- BZOJ5092:[Lydsy1711月赛]分割序列(贪心,高维前缀和)
Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b_2 xor...xor b ...
- bzoj 5092 分割序列 —— 高维前缀和
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5092 首先,处理出异或前缀和 s[i],i 位置的答案就是 s[j] + s[j]^s[i] ...
- bzoj 5094 [Lydsy1711月赛]硬盘检测 概率dp
[Lydsy1711月赛]硬盘检测 Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 273 Solved: 75[Submit][Status][Dis ...
- bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 245 Solved: 128[Submit][Status][D ...
- BZOJ 5093[Lydsy1711月赛]图的价值 线性做法
博主曾更过一篇复杂度为$O( k· \log k)$的多项式做法在这里 惊闻本题有$ O(k)$的神仙做法,说起神仙我就想起了于是就去学习了一波 幂与第二类斯特林数 推导看这里 $$ x^k=\sum ...
随机推荐
- 浅谈js中的this关键字
---恢复内容开始--- this是JavaScript中的关键字之一,在编写程序的时候经常会用到,正确的理解和使用关键字this尤为重要.接下来,笔者就从作用域的角度粗谈下自己对this关键字的理解 ...
- [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式. 证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\s ...
- struts2简单入门-OGNL表达式
什么是OGNL表达式 Object-Graph Navigation Language的缩写. 可以遍历整个对象结构图,实现对象类型转换等功能的表达式. OGNL实际上是个Map集合,有一个上下文根对 ...
- JAVA进阶13
间歇性混吃等死,持续性踌躇满志系列-------------第13天 1.查看线程的运行状态 package code0327; class Demo01 implements Runnable { ...
- audio autoplay 是pause 不会停止播放
$("#alarmWav").append( $('<audio id="alarmAudio" autoplay loop src="../j ...
- 有趣的F-String
F-String 让人上瘾 一个工具脚本的例子 https://www.pydanny.com/python-f-string-are-fun.html 在Python3.6的发布中,我们看到他们采纳 ...
- 往服务器部署thinkphp5代码时要注意 pathinfo的问题
往服务器部署thinkphp5代码时要注意 pathinfo的问题 如果nginx没有做任何设置 要使用?s=/的方式访问地址 只需要修改3个地方就可以了,亲测成功,看代码有注解 location ~ ...
- [C][变量作用域]语句块
概述 C语言作用域有点类似于链式结构,就是下层能访问上层声明的变量,但是上层则不能访问下层声明的变量: #include <stdio.h> #define TRUE 1 int main ...
- [PHP]获取静态方法调用者的类名和运用call_user_func_array代入对象作用域
一.获取静态方法调用者的类名 方法一: class foo { static public function test() { var_dump(get_called_class()); } } cl ...
- UiAutomator1.0 与 UiAutomator2.0
在使用2.0之前,对android自动化框架也做过一些了解<Android 自动化测试框架>.使用UiAutomator2.0也有一段时间,这里将1.0与2.0进行一个对比总结. Ui ...