[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf R}{\bf U}={\bf V}{\bf R}. \eex$$ 此称为 ${\bf F}$ 的极分解.
证明:
(1) 先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}. \eex$$ 事实上, 由 ${\bf F}$ 可逆知 ${\bf F}^T{\bf F}$ 正定, 而存在正交阵 ${\bf Q}$, 使得 $$\bex {\bf F}^T{\bf F}={\bf Q}^T\diag(\lm_1,\cdots,\lm_n){\bf Q},\quad(\lm_i>0). \eex$$ 取 $$\bex {\bf D}=\diag(\sqrt{\lm_1},\cdots,\sqrt{\lm_n}),\quad {\bf P}={\bf F}{\bf Q}^T{\bf D}^{-1}, \eex$$ 则可直接验证 ${\bf P},{\bf Q},{\bf D}$ 适合要求.
(2) 取 $$\bex {\bf R}={\bf P}{\bf Q},\quad {\bf U}={\bf Q}^T{\bf D}{\bf Q},\quad {\bf V}={\bf P}{\bf D}{\bf P}^T \eex$$ 即满足条件.
2. 由 $\rd {\bf y}={\bf F}\rd{\bf x}$, ${\bf F}={\bf R}{\bf U}$ 知 $$\bex {\bf y}={\bf R}\rd{\bf z},\quad\rd {\bf z}={\bf U}\rd {\bf x}, \eex$$ 而 $\rd {\bf x}\to\rd {\bf y}$ 是 ``在三个相互正交的方向上的伸长或压缩'' 与 ``刚体旋转'' 的复合.
3. Cauchy - Green 应变张量
(1) 右: ${\bf C}={\bf F}^T{\bf F}={\bf U}^2$.
(2) 左: ${\bf B}={\bf F}{\bf F}^T={\bf V}^2$.
4. 稳态时, 已知 Cauchy - Green 应变张量求 ${\bf y}$ 的 PDE 组称为 Beltrami 方程组 (超定).
5. 总结: ${\bf B},{\bf C}$ 表示左、右 Cauchy - Green 应变张量, ${\bf F}$ 表示变形.
[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量的更多相关文章
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- Log4j分级别保存日志到单个文件中,并记录IP和用户信息
<?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE log4j:configuration S ...
- Python安装包:协程(gevent)
- Python爬虫【实战篇】百度翻译
先看代码 import requests headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS ...
- 移动端解决单机事件延迟fastclick
引入百度静态公共资源库 <script type='application/javascript' src='http://apps.bdimg.com/libs/fastclick/1.0.0 ...
- vue 组件中的钩子函数 不能直接写this
export default { data(){ return { num: 18 } }, beforeRouteEnter(to, from, next){ next(vm=>{ vm.nu ...
- w3m 使用总结
安装 sudo apt install w3m终端 w3m www.baidu.com 即可打开w3m是个开放源代码的命令行下面的网页浏览器.一般的linux系统都会自带这个工具,可以通过它在命令行下 ...
- UVALive - 4287 - Proving Equivalences(强连通分量)
Problem UVALive - 4287 - Proving Equivalences Time Limit: 3000 mSec Problem Description Input Outp ...
- Linux:Day10 程序包管理
YUM:yellow dog,Yellowdog Update Modifier yum repository:yum repo 存储了众多rpm包,以及包的相关的无数据文件(放置于特定目录下:rep ...
- JS深度判断两个对象字段相同
代码: /** * 判断此对象是否是Object类型 * @param {Object} obj */ function isObject(obj){ return Object.prototype. ...
- centos 7修改时区
在线上环境遇到时间差八小时,怀疑是时区的原因: 然后再linux上运行: date 发现输出的是UTC时间,时间与现在差八个小时 然后通过以下命令去修改时区: ln -sf /usr/share/zo ...