[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf R}{\bf U}={\bf V}{\bf R}. \eex$$ 此称为 ${\bf F}$ 的极分解.
证明:
(1) 先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}. \eex$$ 事实上, 由 ${\bf F}$ 可逆知 ${\bf F}^T{\bf F}$ 正定, 而存在正交阵 ${\bf Q}$, 使得 $$\bex {\bf F}^T{\bf F}={\bf Q}^T\diag(\lm_1,\cdots,\lm_n){\bf Q},\quad(\lm_i>0). \eex$$ 取 $$\bex {\bf D}=\diag(\sqrt{\lm_1},\cdots,\sqrt{\lm_n}),\quad {\bf P}={\bf F}{\bf Q}^T{\bf D}^{-1}, \eex$$ 则可直接验证 ${\bf P},{\bf Q},{\bf D}$ 适合要求.
(2) 取 $$\bex {\bf R}={\bf P}{\bf Q},\quad {\bf U}={\bf Q}^T{\bf D}{\bf Q},\quad {\bf V}={\bf P}{\bf D}{\bf P}^T \eex$$ 即满足条件.
2. 由 $\rd {\bf y}={\bf F}\rd{\bf x}$, ${\bf F}={\bf R}{\bf U}$ 知 $$\bex {\bf y}={\bf R}\rd{\bf z},\quad\rd {\bf z}={\bf U}\rd {\bf x}, \eex$$ 而 $\rd {\bf x}\to\rd {\bf y}$ 是 ``在三个相互正交的方向上的伸长或压缩'' 与 ``刚体旋转'' 的复合.
3. Cauchy - Green 应变张量
(1) 右: ${\bf C}={\bf F}^T{\bf F}={\bf U}^2$.
(2) 左: ${\bf B}={\bf F}{\bf F}^T={\bf V}^2$.
4. 稳态时, 已知 Cauchy - Green 应变张量求 ${\bf y}$ 的 PDE 组称为 Beltrami 方程组 (超定).
5. 总结: ${\bf B},{\bf C}$ 表示左、右 Cauchy - Green 应变张量, ${\bf F}$ 表示变形.
[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量的更多相关文章
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- 【English】20190326
Throughput吞吐量[ˈθruˌpʊt] data movement数据移动 [ˈdetə ˈmuvmənt] How to improve the Throughput for data ...
- Kafka 0.11.0.0 实现 producer的Exactly-once 语义(中文)
很高兴地告诉大家,具备新的里程碑意义的功能的Kafka 0.11.x版本(对应 Confluent Platform 3.3)已经release,该版本引入了exactly-once语义,本文阐述的内 ...
- macos 下usb键盘问题.
Mac 与PC键盘的对比及快捷键(黑苹果) https://www.jianshu.com/p/240f31f6f81a 剩下的就是 系统偏好设置 - 键盘 - 修饰键 - USB键盘(目标键盘) 把 ...
- MicroPython实例之TPYBoard开发板控制OLED显示中文
0x00 前言 之前看到一篇文章是关于TPYBoard v102控制OLED屏显示的,看到之后就想尝试一下使用OLED屏来显示中文.最近利用空余时间搞定了这个实验,特此将实验过程及源码分享出来,方便以 ...
- java 面试题整理(不定期更新)
一.Java基础 1.Java面向对象的三个特征与含义 三大特征是:封装.继承和多态. 封装是指将某事物的属性和行为包装到对象中,这个对象只对外公布需要公开的属性和行为,而这个公布也是可以有选择性的公 ...
- BZOJ3709 Bohater 贪心
传送门 思路很妙-- 有个前提条件:血量无限,这样话肯定先打会回血的怪,再打会掉血的怪 对于会回血的怪,按照受到伤害的顺序从小往大打 对于会掉血的怪似乎并不是很好搞,考虑:将每一时刻的血量函数画出来, ...
- Visual Studio 2017 设置透明背景图
一.前言 给大家分享一下,如何为VS2017设置透明背景图.下面是一张设置前和设置后的图片. 设置前: 设置后: 二.设置背景图片的扩展程序 我们打开VS的扩展安装界面:[工具]->[扩展和更新 ...
- 基于 HTML5 的 WebGL 楼宇自控 3D 可视化监控
前言 智慧楼宇和人们的生活息息相关,楼宇智能化程度的提高,会极大程度的改善人们的生活品质,在当前工业互联网大背景下受到很大关注.目前智慧楼宇可视化监控的主要优点包括: 智慧化 -- 智慧楼宇是一个生态 ...
- vue 图片懒加载 vue-lazyload
图片懒加载 在实际的项目开发中,我们通常会遇见这样的场景:一个页面有很多图片,而首屏出现的图片大概就一两张,那么我们还要一次性把所有图片都加载出来吗?显然这是愚蠢的,不仅影响页面渲染速度,还浪费带宽. ...
- day05(数字类型,字符串类型,列表类型)
一,复习: 1.顺序结构.分支结构.循环结构 2.if分支结构 if 条件: 代码块 elif 条件: 代码块 else: 代码块 # 可以被if转换为False:0 | '' | None | [] ...