1.  质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eee$$

2.  动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rho{\bf u})+\Div(\rho{\bf u}\otimes {\bf u}+p{\bf I})=\rho{\bf F}. \eee$$ 用 \eqref{2_1_2_zl} 可化简 \eqref{2_1_2_dl} 为 $$\bee\label{2_1_2_Euler} \cfrac{\rd{\bf u}}{\rd t}+\cfrac{1}{\rho}\n p={\bf F}, \eee$$ 其中 $$\bex \cfrac{\rd }{\rd t}=\cfrac{\p}{\p t}+{\bf u}\cdot\n.  \eex$$ 称 \eqref{2_1_2_Euler} 为 Euler 方程.

3.  能量守恒定律: $$\bee\label{2_1_2_nl} \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\Div\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }{\bf u}}=\rho {\bf F}\cdot{\bf u}.  \eee$$

(1)   \eqref{2_1_2_nl} 可化简为 $$\bex \cfrac{\rd S}{\rd t}=0, \eex$$ 其中 $S$ 为熵, 由 $$\bex \rd S=\cfrac{1}{T}(\rd e+p\rd \tau) \eex$$ 决定.

(2)   对多方气体, $$\bex p=A(S)\rho^\gamma, \quad A(S)=(\gamma-1)e^\frac{S-S_0}{c_V}, \eex$$ 其中 $\gamma>1$ 为绝热指数.

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. IDEWorkspaceChecks.plist文件是干什么用的?

    在提交PR的时候,无意间发现了在xcworkspace/xcshareddata中多了一个名为IDEWorkspaceChecks.plist的文件.自己并没有手动创建此文件,在网上查了一下,最终对其 ...

  2. 英语口语练习系列-C21-美式幽默

    1. 基础词汇 1.1 back [bæk] n. 后背 on the back 靠着背 sleep on the back 仰着睡 back of the chair 椅子的后背 stab sb. ...

  3. Logging 日志配置格式模板

    import osBASE_DIR = os.path.dirname(os.path.dirname(__file__))DB_PATH = os.path.join(BASE_DIR, 'db') ...

  4. firewall centos

    firewall-cmd --add-port=8056/tcp    --临时增加端口 firewall-cmd --permanent --zone=public --add-port=6069/ ...

  5. SoapUI 学习总结-01 环境配置

    遇到的问题 1,怎么SoapUI的Request URL不支持大写怎么办? 问题:在SoapUI的Request URL中,每次输入的URL中含有的大写字母会自动转换为小写字母,导致请求不了对应的地址 ...

  6. VUE中 style scoped 修改原有样式

    作用域CSS 当<style>标记具有该scoped属性时,其CSS将仅应用于当前组件的元素.这类似于Shadow DOM中的样式封装.它有一些警告,但不需要任何polyfill.通过使用 ...

  7. 基于 HTML5 WebGL 的 3D 棉花加工监控系统

    前言 现在的棉花加工行业还停留在传统的反应式维护模式当中,当棉花加下厂的设备突然出现故障时,控制程序需要更换.这种情况下,首先需要客户向设备生产厂家请求派出技术人员进行维护,然后生产厂家才能根据情况再 ...

  8. 即将发布的 ASP.NET Core 2.2 会有哪些新玩意儿?

    今年 6 月份的时候时候 .NET 团队就在 GitHub 公布了 ASP.NET Core 2.2 版本的 Roadmap(文末有链接),而前两天 ASP.NET Core 2.2 预览版 2 已经 ...

  9. 《React Native 精解与实战》书籍连载「React Native 源码学习方法及其他资源」

    此系列文章将整合我的 React 视频教程与 React Native 书籍中的精华部分,给大家介绍 React Native 源码学习方法及其他资源. 最后的章节给大家介绍 React Native ...

  10. Binary Search(Java)(递归)

    public static int rank(int[] array, int k, int front, int rear) { if(front > rear) return -1; int ...