1.  质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eee$$

2.  动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rho{\bf u})+\Div(\rho{\bf u}\otimes {\bf u}+p{\bf I})=\rho{\bf F}. \eee$$ 用 \eqref{2_1_2_zl} 可化简 \eqref{2_1_2_dl} 为 $$\bee\label{2_1_2_Euler} \cfrac{\rd{\bf u}}{\rd t}+\cfrac{1}{\rho}\n p={\bf F}, \eee$$ 其中 $$\bex \cfrac{\rd }{\rd t}=\cfrac{\p}{\p t}+{\bf u}\cdot\n.  \eex$$ 称 \eqref{2_1_2_Euler} 为 Euler 方程.

3.  能量守恒定律: $$\bee\label{2_1_2_nl} \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\Div\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }{\bf u}}=\rho {\bf F}\cdot{\bf u}.  \eee$$

(1)   \eqref{2_1_2_nl} 可化简为 $$\bex \cfrac{\rd S}{\rd t}=0, \eex$$ 其中 $S$ 为熵, 由 $$\bex \rd S=\cfrac{1}{T}(\rd e+p\rd \tau) \eex$$ 决定.

(2)   对多方气体, $$\bex p=A(S)\rho^\gamma, \quad A(S)=(\gamma-1)e^\frac{S-S_0}{c_V}, \eex$$ 其中 $\gamma>1$ 为绝热指数.

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. 《常见排序算法--PHP实现》

    原文地址: 本文地址:http://www.cnblogs.com/aiweixiao/p/8202360.html Original 2018-01-02 关注 微信公众号 程序员的文娱情怀 1.概 ...

  2. KAPTCHA验证码使用步骤

    使用kaptcha可以方便的配置: · 验证码的字体 · 验证码字体的大小 · 验证码字体的字体颜色 · 验证码内容的范围(数字,字母,中文汉字!) · 验证码图片的大小,边框,边框粗细,边框颜色 · ...

  3. 浏览器和服务器实现跨域(CORS)判定的原理

    前端对Cross-Origin Resource Sharing 问题(CORS,中文又称'跨域')应该很熟悉了.众所周知出于安全的考虑,浏览器有个同源策略,对于不同源的站点之间的相互请求会做限制(跨 ...

  4. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  5. H5页面长按导致app崩溃问题解决

    每天学习一点点 编程PDF电子书.视频教程免费下载:http://www.shitanlife.com/code 最近用H5页面做了个安卓的项目,但是在H5页面中长按文字内容,会导致APP崩溃掉... ...

  6. python小白——进阶之路——day3天-———运算符

    (1)算数运算符:  + - * / // % ** (2)比较运算符:  > < >= <= == != (3)赋值运算符:  = += -= *= /= //= %= ** ...

  7. 二十八、layui的日历组件使用

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. Linux Crontab Shell脚本实现秒级定时任务

    一.编写Shell脚本crontab.sh #!/bin/bash step=1 #间隔的秒数,不能大于60 for (( i = 0; i < 60; i=(i+step) )); do $( ...

  9. 关于mysql中的count()函数

    1.count()函数是用来统计表中记录的一个函数,返回匹配条件的行数. 2.count()语法: (1)count(*)---包括所有列,返回表中的记录数,相当于统计表的行数,在统计结果的时候,不会 ...

  10. 动态生成的dom元素如何绑定事件

    两种类型1.$('li').bind('click',function(){}); 当你用js动态添加li的时候,你添加的li不具有你绑定的事件.这种写法与$('li').click(function ...