证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件
证明m满足四边形不等式
证明s[i,j-1]≤s[i,j]≤s[i+1,j]

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int nmax=2e3+5;
const ll inf=1e17;
ll a[nmax],dp[nmax][nmax],s[nmax][nmax];
void mins(ll &a,ll b){
if(a>b) a=b;
}
int main(){
int n=read();rep(i,1,n*2) rep(j,1,n*2) dp[i][j]=inf;
rep(i,1,n) a[i]=read();
rep(i,1,n) a[i+n]=a[i];
rep(i,1,2*n) a[i]+=a[i-1],dp[i][i]=0,s[i][i]=i;
int t,tp;
rep(i,1,n-1) rep(j,1,2*n-i) {
t=j+i;
rep(k,s[j][t-1],s[j+1][t]) {
tp=dp[j][k]+dp[k+1][t]+a[t]-a[j-1];
if(tp<dp[j][t]) dp[j][t]=tp,s[j][t]=k;
}
}
ll ans=inf;
rep(i,1,n) mins(ans,dp[i][i+n-1]);
printf("%lld\n",ans);
return 0;
}

  

基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题
 收藏
 关注
N堆石子摆成一个环。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。
 
例如: 1 2 3 4,有不少合并方法
1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)
1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)
1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)
 
括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。
 
Input
第1行:N(2 <= N <= 1000)
第2 - N + 1:N堆石子的数量(1 <= A[i] <= 10000)
Output
输出最小合并代价
Input示例
4
1
2
3
4
Output示例
19

51nod1022 石子归并 V2的更多相关文章

  1. 51nod 1022 石子归并 V2 —— DP四边形不等式优化

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2  基准时间限制:1 秒 空间限 ...

  2. [51nod 1022] 石子归并v2 [dp+四边形不等式优化]

    题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...

  3. 51 nod 石子归并 + v2 + v3(区间dp,区间dp+平行四边形优化,GarsiaWachs算法)

    题意:就是求石子归并. 题解:当范围在100左右是可以之间简单的区间dp,如果范围在1000左右就要考虑用平行四边形优化. 就是多加一个p[i][j]表示在i到j内的取最优解的位置k,注意能使用平行四 ...

  4. 51Nod 1022 石子归并 V2(区间DP+四边形优化)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 题目大意: N堆石子摆成一个环.现要将石子有次序地合并成 ...

  5. 石子归并的三种打开方式——难度递增———51Node

    1021 石子归并    N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价.   ...

  6. 51nod 1022 石子归并 环形+四边形优化

    1022 石子归并 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 N堆石子摆成一个环.现要将石子有次序地合并成一堆.规定每次只能选相邻的2 ...

  7. AC日记——石子归并 codevs 1048

    1048 石子归并  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 有n堆石子排成一列,每堆石子 ...

  8. 51nod 1021 石子归并(dp)

    51nod 1021 石子归并 题解:从i到j合并的最小值:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]); 最 ...

  9. Codevs 1048 石子归并

    1048 石子归并 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合 ...

随机推荐

  1. WaitForTargetFPS

    WaitForTargetFPS,是关于帧数限制的,你可能开了垂直同步,其实是防止撕裂.先说撕裂,在显示器的帧缓存会被不同步的显卡的帧缓存给替换掉,导致显示器显示到一半的时候,内存被换掉,你看到上频是 ...

  2. HDU 1028 Ignatius and the Princess III (递归,dp)

    以下引用部分全都来自:http://blog.csdn.net/ice_crazy/article/details/7478802  Ice—Crazy的专栏 分析: HDU 1028 摘: 本题的意 ...

  3. (转)Tips for Optimizing C/C++ Code

    本来要自己翻译的,随手搜索了一下,发现五天前已经有人翻译了,我就不重复发明轮子了. 转自:http://blog.csdn.net/yutianzuijin/article/details/26289 ...

  4. 线性时间常数空间找到数组中数目超过n/5的所有元素

    问题描述: Design an algorithm that, given a list of n elements in an array, finds all the elements that ...

  5. UITableView多选全选

    自定义cell和取到相应的cell就行了 TableViewCell.h #import <UIKit/UIKit.h> @interface TableViewCell : UITabl ...

  6. isMobile 一个简单的JS库,用来检测移动设备

    点这里 github地址:https://github.com/kaimallea/isMobile Example Usage I include the minified version of t ...

  7. OpenCV4Android开发之旅(一)----OpenCV2.4简介及 app通过Java接口调用OpenCV的示例

    转自:  http://blog.csdn.net/yanzi1225627/article/details/16917961 开发环境:windows+ADT Bundle+CDT+OpenCV-2 ...

  8. Eclipse Java EE 创建 Dynamic Web Project

    1.      创建一个web工程,此处用eclipse创建(如果对创建web工程很熟悉,可以不看的,本文目的是做一个记录)  1)     打开新建工程对话框,选择Dynamic web Proje ...

  9. android模拟器(genymotion)+appium+python 框架执行基本原理(目前公司自己写的)

    android模拟器(genymotion)+appium+python 框架执行的基本过程: 1.Push.initDate(openid)方法     //业务数据初始化 1.1   v5db.p ...

  10. jmeter if 控制器

    判断变量值是不是为空(有没有被赋值): "${jd_aid}"!="\${jd_aid}"