这题根据的Dilworth定理,链的最小个数=反链的最大长度 , 然后就是排序LIS了

链-反链-Dilworth定理

hdu1051

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <string>
#include <queue>
#include <stdlib.h>
using namespace std;
#define N 5050 struct node
{
int x,y;
}g[N]; int cmp(node t,node t1)
{
return t.x<t1.x;
}
int dp[N]; int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d%d",&g[i].x,&g[i].y);
sort(g,g+n,cmp);
memset(dp,,sizeof(dp));
dp[]=;
int ans=;
for(int i=;i<n;i++)
{
int tmp=;
for(int j=;j<i;j++)
{
if(g[j].x==g[i].x) continue;
if(g[j].y>g[i].y) tmp=max(tmp,dp[j]);
}
dp[i]=tmp+;
ans=max(ans,dp[i]);
}
printf("%d\n",ans);
}
return ;
}

hdu1051(LIS | Dilworth定理)的更多相关文章

  1. 洛谷P1020 导弹拦截 题解 LIS扩展题 Dilworth定理

    题目链接:https://www.luogu.com.cn/problem/P1020 题目大意: 给你一串数,求: 这串数的最长不上升子序列的长度: 最少划分成多少个子序列是的这些子序列都是不上升子 ...

  2. codevs1044:dilworth定理

    http://www.cnblogs.com/submarine/archive/2011/08/03/2126423.html dilworth定理的介绍 题目大意:求一个序列的lds 同时找出这个 ...

  3. Dilworth定理

    来自网络的解释: 定理内容及其证明过程数学不好看不懂. 通俗解释: 把一个数列划分成最少的最长不升子序列的数目就等于这个数列的最长上升子序列的长度(LIS) EXAMPLE 1   HDU 1257 ...

  4. 如何使用Dilworth定理

    相关例题:NOIP 1999导弹拦截 遇到这题不会去网上搜Dilworth定理,太难受了,看不懂证明 但是,我知道怎么使用了,管那么多,会用就完事了 学习自这篇文章 -1.为什么我不想学证明这个定理 ...

  5. 【codevs1044】导弹拦截问题与Dilworth定理

    题目描述 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某 ...

  6. 偏序集的Dilworth定理

    定理1 令(X,≤)是一个有限偏序集,并令r是其最大链的大小.则X可以被划分成r个但不能再少的反链.其对偶定理称为Dilworth定理:定理2 令(X,≤)是一个有限偏序集,并令m是反链的最大的大小. ...

  7. (转载)偏序集的Dilworth定理学习

    导弹拦截是一个经典问题:求一个序列的最长不上升子序列,以及求能最少划分成几组不上升子序列.第一问是经典动态规划,第二问直接的方法是最小路径覆盖, 但是二分图匹配的复杂度较高,我们可以将其转化成求最长上 ...

  8. BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)

    BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合 ...

  9. 【XSY2727】Remove Dilworth定理 堆 树状数组 DP

    题目描述 一个二维平面上有\(n\)个梯形,满足: 所有梯形的下底边在直线\(y=0\)上. 所有梯形的上底边在直线\(y=1\)上. 没有两个点的坐标相同. 你一次可以选择任意多个梯形,必须满足这些 ...

随机推荐

  1. jQuery对象和javascript对象互换

    jquery变js var obj=$("dom"); 或 var obj=jQuery("dom"); js 变 jquery var $jobj=$(obj ...

  2. UVA 562 Dividing coins (01背包)

    题意:给你n个硬币,和n个硬币的面值.要求尽可能地平均分配成A,B两份,使得A,B之间的差最小,输出其绝对值.思路:将n个硬币的总价值累加得到sum,   A,B其中必有一人获得的钱小于等于sum/2 ...

  3. Difference Between Vector and Deque in C++

    1) Dequeue can quickly insert or delete both at the front or the end. However, vector can only quick ...

  4. CAS登录后回传除了ticket参数以外的其他自定义参数

    在一次项目的技术选型中,选择了easyui+cas+shiro+spring的组合,cas实现了单点登录,这使得在一个应用中嵌入另一个应用的页面来展示数据所涉及到的授权方面变得简单. 由于shiro在 ...

  5. hdu 4068 SanguoSHA

    搜索下就可以了…… 代码如下: #include<iostream> #include<cstring> #include<cstdio> #include< ...

  6. sizeof学习理解

    以下内容转自: http://www.cnblogs.com/ComputerG/archive/2012/02/02/2335611.html 博问 闪存 首页 新随笔 联系 管理 随笔- 72  ...

  7. Yarn上的几个问题整理

    原文链接   http://xiguada.org/yarn_some_question/ ‎   1. NodeManager是如何Kill掉Container的呢? 答,在DefaultConta ...

  8. (转载) .NET2.0程序集无法在.net 4.0 中运行的解决方案

    首先在MSDN上看到 4.0 的更新日志中有如下这条: .NET Framework 4 不能自动使用自己的公共语言运行时版本来运行由 .NET Framework 早期版本生成的应用程序. 若要使用 ...

  9. lintcode:单词切分

    单词切分 给出一个字符串s和一个词典,判断字符串s是否可以被空格切分成一个或多个出现在字典中的单词. 样例 s = "lintcode" dict = ["lint&qu ...

  10. lintcode: 旋转图像

    旋转图像 给定一个N×N的二维矩阵表示图像,90度顺时针旋转图像. 解题 顺时针旋转90度 就是 上下翻转,再主对角对折 public class Solution { /** * @param ma ...