UVA 10003 Cutting Sticks(区间dp)
Description
| Cutting Sticks |
You have to cut a wood stick into pieces. The most affordable company, The Analog Cutting Machinery, Inc. (ACM), charges money according to the length of the stick being cut. Their procedure of work requires that they only make one cut at a time.
It is easy to notice that different selections in the order of cutting can led to different prices. For example, consider a stick of length 10 meters that has to be cut at 2, 4 and 7 meters from one end. There are several choices. One can be cutting first at 2, then at 4, then at 7. This leads to a price of 10 + 8 + 6 = 24 because the first stick was of 10 meters, the resulting of 8 and the last one of 6. Another choice could be cutting at 4, then at 2, then at 7. This would lead to a price of 10 + 4 + 6 = 20, which is a better price.
Your boss trusts your computer abilities to find out the minimum cost for cutting a given stick.
Input
The input will consist of several input cases. The first line of each test case will contain a positive number l that represents the length of the stick to be cut. You can assume l < 1000. The next line will contain the number n ( n < 50) of cuts to be made.
The next line consists of n positive numbers ci ( 0 < ci < l) representing the places where the cuts have to be done, given in strictly increasing order.
An input case with l = 0 will represent the end of the input.
Output
You have to print the cost of the optimal solution of the cutting problem, that is the minimum cost of cutting the given stick. Format the output as shown below.
Sample Input
100
3
25 50 75
10
4
4 5 7 8
0
Sample Output
The minimum cutting is 200.
The minimum cutting is 22.
状态转移方程:d(i,j)=min(d(i,k)+d(k,j)+a[j]-a[i]) (i<k<j)
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; const int maxn=;
const int INF=;
int d[maxn][maxn],a[maxn],l,n;
inline int min(int a,int b){return a<b?a:b;} int dp(int i,int j)
{
if(i+==j) return d[i][j]=;
if(d[i][j]!=-) return d[i][j];
d[i][j]=INF;
for(int k=i+;k<j;k++)
d[i][j]=min(d[i][j],dp(i,k)+dp(k,j)+a[j]-a[i]);
return d[i][j];
}
int main()
{
while(~scanf("%d",&l),l)
{
scanf("%d",&n);
memset(d,-,sizeof(d));
for(int i=;i<=n;i++) scanf("%d",a+i);
a[]=;a[n+]=l;
printf("The minimum cutting is %d.\n",dp(,n+));
}
return ;
}
UVA 10003 Cutting Sticks(区间dp)的更多相关文章
- UVA 10003 Cutting Sticks 区间DP+记忆化搜索
UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...
- uva 10003 Cutting Sticks(区间DP)
题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...
- 10003 Cutting Sticks(区间dp)
Cutting Sticks You have to cut a wood stick into pieces. The most affordable company, The Analog ...
- uva 10003 Cutting Sticks 【区间dp】
题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...
- UVA 10003 Cutting Sticks
题意:在给出的n个结点处切断木棍,并且在切断木棍时木棍有多长就花费多长的代价,将所有结点切断,并且使代价最小. 思路:设DP[i][j]为,从i,j点切开的木材,完成切割需要的cost,显然对于所有D ...
- UVa 10003 - Cutting Sticks(区间DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- uva 10003 Cutting Sticks (区间dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: 打开 题目大意 一根长为l的木棍,上面有n个"切点",每个点的位置为c[i] 要按照一 ...
- UVA 10003 Cutting Sticks 切木棍 dp
题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费. 这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗? 题目其实就是把n+1根 ...
- UVA - 10003 Cutting Sticks(切木棍)(dp)
题意:有一根长度为L(L<1000)的棍子,还有n(n < 50)个切割点的位置(按照从小到大排列).你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每次切割的费用 ...
随机推荐
- 关于SQL语言的初步认识
关于SQL语言的初步认识 1.一个SQL数据库是表(Table)的集合,它由一个或多个SQL模式定义. 2.一个SQL表由行集构成,一行是列的序列(集合),每列与行对应一个数据项. 3.一个表或者是一 ...
- 初探es6
es6环境 现在的JavaScript 引擎还不能完全支持es6的新语法.新特性.所以要想在页面中直接使用,是会报错的,这时候就需要使用babel将es2015的特性转换为ES5 标准的代码. 1.全 ...
- Docker 容器的跨主机连接
使用网桥实现跨主枳容器连接 不推荐 使用OpenvSwitch实现跨主机容器连接 OpenvSwitch: OpenvSwitch是一个高质量的.多层虚拟交换枳,使用开源Apache2.0许可协议,由 ...
- v2ex站长专访 - 100offer专访Livid:不仅仅是V站站长
转载自: https://www.douban.com/group/topic/121611313/ 前几天上网时偶然发现v2ex站长的blog(https://livid.v2ex.com/),了解 ...
- day14-推导式和生成器表达式
1.推导式规则 [每一个元素或者是和元素相关的操作 for 元素 in 可迭代数据类型] ----------遍历之后挨个处理[满足条件的元素相关的操作 for 元素 in 可迭代数据类型 if 元素 ...
- selenium+phantomjs爬取bilibili
selenium+phantomjs爬取bilibili 首先我们要下载phantomjs 你可以到 http://phantomjs.org/download.html 这里去下载 下载完之后解压到 ...
- Django之cookie、session
会话跟踪技术 可以把会话理解为客户端与服务器之间的一次会晤,在一次会晤中可能会包含多次请求和响应. 一次会话过程中,我们应该注意的是什么呢? 那就是,一些操作要保证用户操作的是用户自己个人的数据.举个 ...
- JFinal 结合Dubbo发生的一些问题
1.java.lang.NoSuchMethodError: org.jboss.resteasy.specimpl.BuiltResponse.getHeaders()Ljavax/ws/rs/co ...
- Linux对大容量硬盘分区
随着单块硬盘容量的增大和硬盘价格的下降,2TB的磁盘使用将很快会普及,由于传统的MBR方式存储分区表的方 式缺陷,将可能导致很多分区工具不能正确地读取大于2TB容量的硬盘而无法正常分区大容量硬盘.其实 ...
- Python虚拟机之异常控制流(五)
Python中的异常控制语义结构 在Python虚拟机之异常控制流(四)这一章中,我们考察了Python的异常在虚拟机中的级别上是什么东西,抛出异常这个动作在虚拟机的级别上对应的行为,最后,我们还剖析 ...