POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860
Currency Exchange
Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. Input The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102. Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. Output If Nick can increase his wealth, output YES, in other case output NO to the output file.
Sample Input 3 2 1 20.0 Sample Output YES Source Northeastern Europe 2001, Northern Subregion
|
题意
给你多种货币之间的兑换关系,现在你有若干某种货币,问你是否能够通过不断兑换,使得你的这种货币变多。
题解
如果存在某个环,使得你在这个环上跑一圈钱变多了,并且这个环可以由起点到达,那么你就可以在这个环上一直跑,知道钱变得无穷大,然后再回到起点,那么此时你的钱就肯定变多了。所以问题就转换为了,在这个图上是否存在这样的环,我们发现,这和负环的性质十分相似。那么可以得出以下算法,通过spfa遍历图,每次从队首取出元素去松弛各个节点的当前值,这里的松弛和最短路相反,定义松弛成功为当前值变大。如果松弛成功且节点没在队中,那么入队。如果某个节点入队的次数大于n,那么这个节点一定是某个钱变多的环上的节点。
代码
#include<iostream>
#include<cstring>
#include<vector>
#include<string>
#include<queue>
#include<algorithm>
#define MAX_N 123
using namespace std; struct edge {
public:
int to;
double r, c; edge(int t, double rr, double cc) : to(t), r(rr), c(cc) { } edge() { }
}; vector<edge> G[MAX_N];
int N,M,S;
double V; queue<int> que;
bool inQue[MAX_N];
double d[MAX_N];
int cnt[MAX_N]; bool spfa() {
que.push(S);
inQue[S] = ;
d[S] = V;
cnt[S]++;
while (que.size()) {
int u = que.front();
que.pop();
inQue[u] = ;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
double r = G[u][i].r, c = G[u][i].c;
if ((d[u] - c) * r > d[v]) {
d[v] = (d[u] - c) * r;
if (!inQue[v]) {
que.push(v);
inQue[v] = ;
cnt[v]++;
if (cnt[v] > N)return true;
}
}
}
}
return false;
} int main() {
cin.sync_with_stdio(false);
cin >> N >> M >> S >> V;
for (int i = ; i < M; i++) {
int u, v;
double r, c;
cin >> u >> v >> r >> c;
G[u].push_back(edge(v, r, c));
cin >> r >> c;
G[v].push_back(edge(u, r, c));
}
if (spfa())cout << "YES" << endl;
else cout << "NO" << endl; return ;
}
POJ 1860 Currency Exchange 最短路+负环的更多相关文章
- poj - 1860 Currency Exchange Bellman-Ford 判断正环
Currency Exchange POJ - 1860 题意: 有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费.你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你 ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- POJ 1860 Currency Exchange【SPFA判环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- poj 1860 Currency Exchange (最短路bellman_ford思想找正权环 最长路)
感觉最短路好神奇呀,刚开始我都 没想到用最短路 题目:http://poj.org/problem?id=1860 题意:有多种从a到b的汇率,在你汇钱的过程中还需要支付手续费,那么你所得的钱是 mo ...
- POJ 1860 Currency Exchange 最短路 难度:0
http://poj.org/problem?id=1860 #include <cstdio> //#include <queue> //#include <deque ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
随机推荐
- 2018 Python开发者大调查:Python和JavaScript最配?
在2018年秋季,Python软件基金会与JetBrains发起了年度Python开发者调查. 报告的目的是寻找Python领域的新趋势,帮助开发者深入了解2018年Python开发者的现状. 该报告 ...
- nRF52-PCA10040——Overview
Overview Zephyr applications use the nrf52_pca10040 board configuration to run on the nRF52 Developm ...
- Root CA certificate:ApacheJMeterTemporaryRootCA.crt created in JMeter bin directory
今天学习jmeter录制,在点击start之后弹出: 且在jmeter安装目录里确实生成了ApacheJMeterTemporaryRootCA.crt文件 上网查询官方文档http://120.52 ...
- Page-Object思想
为什么要使用page-object 集中管理元素对象 集中管理一个page内的公共方法 后期维护方便 集中管理元素对象 实现方法: 调用方法: WebElement element = dri ...
- Flask-web开发
使用虚拟环境 虚拟环境使用第三方实用工具virtualenv创建.输入一下命令可以检查系统是否安装了virtualenv virtualenv --version 如果显示错误,你就需要安装这个工具. ...
- HDU 5528 Count a * b 欧拉函数
题意: 定义函数\(f(n)\)为\(i \cdot j \not\equiv 0 \; (mod \; n)\)的数对\((i,j)\)的个数\((0 \leq i,j \leq n)\) \(g( ...
- action属性和data属性组合事例
- 大数据学习——sparkRDD
https://www.cnblogs.com/qingyunzong/p/8899715.html 练习1:map.filter //通过并行化生成rdd val rdd1 = sc.paralle ...
- Python学习-day4
学习装饰器,首先听haifeng老师讲解了一下准备知识. 1.函数即变量 2.高阶函数+嵌套函数==>装饰器 装饰器的作用是在,1)不改变源代码,2)不改变原函数的调用方式的前提下为函数增加新的 ...
- 当网络中断的时候,JTA全局事务管理,究竟会不会回滚???
前言:有人问了我一个问题,就是说在网络中断的时候,JTA的全局事务管理,会不会回滚?当时说会回滚,但没给对方说清楚理由,也不太认同我的观点.现在总结一下. 今天一天都在看文档(也查了一些博客和网站), ...