POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860
|
Currency Exchange
Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. Input The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102. Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. Output If Nick can increase his wealth, output YES, in other case output NO to the output file.
Sample Input 3 2 1 20.0 Sample Output YES Source Northeastern Europe 2001, Northern Subregion
|
题意
给你多种货币之间的兑换关系,现在你有若干某种货币,问你是否能够通过不断兑换,使得你的这种货币变多。
题解
如果存在某个环,使得你在这个环上跑一圈钱变多了,并且这个环可以由起点到达,那么你就可以在这个环上一直跑,知道钱变得无穷大,然后再回到起点,那么此时你的钱就肯定变多了。所以问题就转换为了,在这个图上是否存在这样的环,我们发现,这和负环的性质十分相似。那么可以得出以下算法,通过spfa遍历图,每次从队首取出元素去松弛各个节点的当前值,这里的松弛和最短路相反,定义松弛成功为当前值变大。如果松弛成功且节点没在队中,那么入队。如果某个节点入队的次数大于n,那么这个节点一定是某个钱变多的环上的节点。
代码
#include<iostream>
#include<cstring>
#include<vector>
#include<string>
#include<queue>
#include<algorithm>
#define MAX_N 123
using namespace std; struct edge {
public:
int to;
double r, c; edge(int t, double rr, double cc) : to(t), r(rr), c(cc) { } edge() { }
}; vector<edge> G[MAX_N];
int N,M,S;
double V; queue<int> que;
bool inQue[MAX_N];
double d[MAX_N];
int cnt[MAX_N]; bool spfa() {
que.push(S);
inQue[S] = ;
d[S] = V;
cnt[S]++;
while (que.size()) {
int u = que.front();
que.pop();
inQue[u] = ;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
double r = G[u][i].r, c = G[u][i].c;
if ((d[u] - c) * r > d[v]) {
d[v] = (d[u] - c) * r;
if (!inQue[v]) {
que.push(v);
inQue[v] = ;
cnt[v]++;
if (cnt[v] > N)return true;
}
}
}
}
return false;
} int main() {
cin.sync_with_stdio(false);
cin >> N >> M >> S >> V;
for (int i = ; i < M; i++) {
int u, v;
double r, c;
cin >> u >> v >> r >> c;
G[u].push_back(edge(v, r, c));
cin >> r >> c;
G[v].push_back(edge(u, r, c));
}
if (spfa())cout << "YES" << endl;
else cout << "NO" << endl; return ;
}
POJ 1860 Currency Exchange 最短路+负环的更多相关文章
- poj - 1860 Currency Exchange Bellman-Ford 判断正环
Currency Exchange POJ - 1860 题意: 有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费.你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你 ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- POJ 1860 Currency Exchange【SPFA判环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- poj 1860 Currency Exchange (最短路bellman_ford思想找正权环 最长路)
感觉最短路好神奇呀,刚开始我都 没想到用最短路 题目:http://poj.org/problem?id=1860 题意:有多种从a到b的汇率,在你汇钱的过程中还需要支付手续费,那么你所得的钱是 mo ...
- POJ 1860 Currency Exchange 最短路 难度:0
http://poj.org/problem?id=1860 #include <cstdio> //#include <queue> //#include <deque ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
随机推荐
- leetcode-5-basic
解题思路: 设两个变量land和sink,land的值是1的数量,sink表示内部的边.result = land*4-sink*2.按行扫描得到land, 同时得到同一行中内部边的数目:然后按列扫描 ...
- stm32独立看门狗实验
//ALIENTEK Mini STM32开发板V1.9范例代码5//独立看门狗实验//正点原子@ALIENTEK//技术论坛:www.openedv.com STM32F103RBT6属于中容量版本 ...
- Aizu - 1378 Secret of Chocolate Poles (DP)
你有三种盘子,黑薄,白薄,黑厚. 薄的盘子占1,厚的盘子占k. 有一个高度为L的桶,盘子总高度不能超出桶的总高度(可以小于等于).相同颜色的盘子不能挨着放. 问桶内装盘子的方案数. 如 L = 5,k ...
- linux学习-用户的特殊 shell 与 PAM 模块
特殊的 shell, /sbin/nologin 『无法登入』指的是:『这个使用者无法使用 bash 或其他 shell 来登入系统』而已, 并不是说这个账号就无法使用其他的系统资源! 让某个具有 / ...
- JAVA、JDK等入门概念,下载安装JAVA并配置环境变量
一.概念 Java是一种可以撰写跨平台应用程序的面向对象的程序设计语言,具体介绍可查阅百度JAVA百科,这里不再赘述. Java分为三个体系,分别为: Java SE(J2SE,Java2 Platf ...
- Mysql登陆、退出、更改环境编码
登录: mysql -h[数据库地址] -u[username] -p[password] -P[端口] //大写P表示端口,小写p表示密码 例如:mysql -hlocalhost -uroot ...
- HDU 5371 Manacher Hotaru's problem
求出一个连续子序列,这个子序列由三部分ABC构成,其中AB是回文串,A和C相同,也就是BC也是回文串. 求这样一个最长的子序列. Manacher算法是在所有两个相邻数字之间插入一个特殊的数字,比如- ...
- navicat for mysql 在win7下设置定时计划之导出数据处理
navicat for mysql 在win7下设置定时计划之导出数据处理 博客分类: mysql navitcatmysql定时任务导出 前两篇记录了,navicat for mysql计划的入门 ...
- Python学习-day4
学习装饰器,首先听haifeng老师讲解了一下准备知识. 1.函数即变量 2.高阶函数+嵌套函数==>装饰器 装饰器的作用是在,1)不改变源代码,2)不改变原函数的调用方式的前提下为函数增加新的 ...
- jqery实现一个图标上下滑动效果
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...