问题描述

一个由按钮组成的矩阵,其中每行有6个按钮,共5行。每个按钮的位置上有一盏灯。当按下一个按钮后,该按钮以及周围位置(上边、下边、左边、右边)的灯都会改变一次。即,如果灯原来是点亮的,就会被熄灭;如果灯原来是熄灭的,则会被点亮。在矩阵角上的按钮改变3盏灯的状态;在矩阵边上的按钮改变4盏灯的状态;其他的按钮改变5盏灯的状态。

在上图中,左边矩阵中用X标记的按钮表示被按下,右边的矩阵表示灯状态的改变。对矩阵中的每盏灯设置一个初始状态。请你按按钮,直至每一盏等都熄灭。与一盏灯毗邻的多个按钮被按下时,一个操作会抵消另一次操作的结果。在下图中,第2行第3、5列的按钮都被按下,因此第2行、第4列的灯的状态就不改变。

请你写一个程序,确定需要按下哪些按钮,恰好使得所有的灯都熄灭。根据上面的规则,我们知道:

(1)第2次按下同一个按钮时,将抵消第1次按下时所产生的结果。因此,每个按钮最多只需要按下一次;

(2)各个按钮被按下的顺序对最终的结果没有影响;

(3)对第1行中每盏点亮的灯,按下第2行对应的按钮,就可以熄灭第1行的全部灯。如此重复下去,可以熄灭第1、2、3、4行的全部灯。同样,按下第1、2、3、4、5列的按钮,可以熄灭前5列的灯。

输入数据

第一行是一个正整数N,表示需要解决的案例数。每个案例由5行组成,每一行包括6个数字。这些数字以空格隔开,可以是0或1。0表示灯的初始状态是熄灭的,1表示灯的初始状态是点亮的。

输出要求

对每个案例,首先输出一行,输出字符串“PUZZLE #m”,其中m是该案例的序号。接着按照该案例的输入格式输出5行,其中的1表示需要把对应的按钮按下,0则表示不需要按对应的按钮。每个数字以一个空格隔开。

输入样例
2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0
输出样例
PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

根据熄灯规则,如果矩阵press
是寻找的答案,那么按照press
的第一行对矩阵中的按钮操作之后,此时在矩阵的第一行上:
如果位置(1, j)上的灯是点亮的,则要按下位置(2, j)上按钮,即press[2][j]一定取1;
 如果位置(1, j)上的灯是熄灭的,则不能按位置(2, j)上按钮,即press[2][j]一定取0。
这样依据press
的第一、二行操作矩阵中的按钮,才能保证第一行的灯全部熄灭。而对矩阵中第三、四、五行的按钮无论进行什么样的操作,都不影响第一行各灯的状态。依此类推,可以确定press
第三、四、五行的值。
因此,一旦确定了press
第一行的值之后,为熄灭矩阵中第一至四行的灯,其他行的值也就随之确定了。press
的第一行共有2^6
种取值,分别对应唯一的一种press
取值,使得矩阵中前四行的灯都能熄灭。只要对这2^6
种情况进行判断就可以了:如果按照其中的某个press对矩阵中的按钮进行操作后,第五行的所有灯也恰好熄灭,则找到了答案。

解决方案

(1)对press
第一行的元素press[1][1]~ press [1][6]的各种取值情况进行枚举,依次考虑如下情况:

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

……

1 1 1 1 1 1

(2)
对press 第一行每一种取值,根据熄灯规则计算出press
的其他行的值。判断这个press
能否使得矩阵第五行的所有灯也恰好熄灭。

#include <stdio.h>
int puzzle[6][8],press[6][8]; bool guess()
{
int c,r;
for (r=1;r<5;r++ )
for (c=1;c<7;c++)
press[r+1][c]=(puzzle[r][c]+press[r][c]
+press[r-1][c]+press[r][c-1]
+press[r][c+1])%2;
for(c=1;c<7;c++) //判断最后一行是否熄灭
if ((press[5][c-1]+press[5][c]+press[5][c+1]
+press[4][c])%2!=puzzle[5][c])
return(false);
return true;
} int main(){
int cases,r,c;
unsigned i = 0 , j = 0;
unsigned int w = 1; for (r=0;r<6;r++)
press[r][0]=press[r][7]=0;
for (c=1;c<7;c++)
press[0][c]=0;
scanf("%d", &cases);
while(cases!=0){
for (r=1;r<6;r++)
for (c=1;c<7;c++)
scanf("%d", &puzzle[r][c]); //对第一行枚举64种操作
for(i = 0;i<64;i++){
w = 1;
for(j = 1;j < 7;j++){
press[1][7-j] = (i & w)>>(j-1);
//printf("%d ",w);
w = w << 1;
//printf("%d",press[1][7-j]);
}
//printf(" i=%d\n",i);
//000000 --- 11111111 press[1][1 ... 6]
//直到出现符合要求的
if(guess()){
break;
}
} printf("PUZZLE #%d\n",cases--);
for (r=1;r<6;r++)
{
for (c=1;c<7;c++)
printf("%d ",press[r][c]);
printf("\n");
}
}
return 0;
}

熄灯问题 --POJ 2811-ACM的更多相关文章

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  3. OpenJudge 2811 熄灯问题 / Poj 1222 EXTENDED LIGHTS OUT

    1.链接地址: http://bailian.openjudge.cn/practice/2811 http://poj.org/problem?id=1222 2.题目: 总时间限制: 1000ms ...

  4. POJ 3464 ACM Computer Factory

    ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4829 Accepted: 1641 ...

  5. POJ 3436 ACM Computer Factory

    题意:   为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...

  6. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  7. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  8. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  9. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

随机推荐

  1. JavaScript高级程序设计1.pdf

    第一遍通读的时候对JavaScript一点都不了解翻了一整本书仅仅是眼熟的几个名词,现在会写一些js效果了,对程序有一定的认知,又要在读一遍,再加深一些了解,当然以后还会有第三遍第四遍,等完全啃透了这 ...

  2. [JIT_APP]Activity生命周期相关的7个方法

    先发一张安卓官方文档里面的Activity生命周期图解 下面在对这7个生命周期内相关的方法做一些简单的介绍 OnCreate() 当Activity被创建的时候,会自动运行该方法.该方法做一些初始化动 ...

  3. 基础排序算法之快速排序(Quick Sort)

    快速排序(Quick Sort)同样是使用了分治法的思想,相比于其他的排序方法,它所用到的空间更少,因为其可以实现原地排序.同时如果随机选取中心枢(pivot),它也是一个随机算法.最重要的是,快速排 ...

  4. lightoj 1027 简单概率dp

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1027 #include<cstdio> #include<cstri ...

  5. openStack 性能开测

  6. 【机房重构】SQL之视图

    近期在重构机房收费系统,越往后就会越感觉到这里很多其它的是对之前学过知识(数据库,设计模式)的一种应用和回想.比方在登录功能中用到了抽象加反射,在学生下机中,我们能够用触发器来同一时候更新两个表.这里 ...

  7. [Flux] 2. Overview and Dispatchers

    Flux has four major components: Stores, Dispatchers, Views, and Actions. These components interact l ...

  8. 读取一个文件,将其Base64编码,每76个字符加一个换行(转)

    echo chunk_split(base64_encode(file_get_contents('base64.txt'))); 例子 1 本例分隔每个字符,并添加 ".": & ...

  9. 轻量级的原型设计工具-Axure RP

    1. 软件下载地址: http://www.downxia.com/downinfo/25742.html 这个版本不需要注册码,不需要安装,存绿色版. 2. 基本介绍教程: http://wenku ...

  10. (转载)Java 1.7的新特性

    网上找了一下,整理了贴出来. 下面是Java 1.7 里新出现的功能的一些用法例子: 对集合的支持 摒弃了 Java 集合接口的实现类,如: ArrayList . HashSet 和 HashMap ...