有向图的欧拉路径POJ2337
每个单词可以看做一条边,每个字母就是顶点。
有向图欧拉回路的判定,首先判断入度和出度,其实这个题判定的是欧拉通路,不一定非得构成环,所以可以有一个点的顶点入度比出度大1,另外一个点的出度比入度大1,或者每个点的出度和入度相等。用并查集判断是否弱联通。最后dfs求出欧拉路径,不过这个题是让求字典序最小的那个,所以加边之前先把边排序。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
using namespace std;
const int maxn = ;
struct Edge {
int to, next;
int id;
}edge[maxn * ];
int tot, head[maxn];
int in[maxn], out[maxn];
int F[maxn];
int st;
bool vis[];
string str[maxn];
void init()
{
tot = ;
memset(head, -, sizeof(head));
memset(F, -, sizeof(F));
}
void addedge(int u, int v, int id)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].id = id;
head[u] = tot++;
}
int Find(int x)
{
if (F[x] == -) return x;
return F[x] = Find(F[x]);
}
void Union(int x, int y)
{
int tx = Find(x);
int ty = Find(y);
if (tx != ty)
F[tx] = ty;
}
bool check(int s)
{
int in1 = , out1 = ;
for (int i = ; i <= ; i++)//判断出入度关系
{
if (in[i] == out[i]) continue;
else if (in[i] - out[i] == ) in1++;
else if (out[i] - in[i] == ) out1++, st = i;//如果有出度比入度大1的,说明是欧拉通路,起点只能是那个出度比入度大1的那个点
else return false;
}
//printf("in1 = %d, out1 = %d\n", in1, out1);
if (!(in1 == && out1 == ) && !(in1 == && out1 == )) return false;
for (int i = ; i <= ; i++)//判断弱联通
if (vis[i] && Find(i) != Find(s))
return false;
return true;
}
bool vis2[maxn * ];//判断每条边是否访问过。
int top;
int ans[maxn * ];//保存路径
void dfs(int u)
{
for (int i = head[u]; i != -; i = edge[i].next)
{
if (!vis2[i])
{
vis2[i] = true;
dfs(edge[i].to);
ans[top++] = i;
}
}
}
int main()
{
int T, n;
scanf("%d", &T);
while (T--)
{
init();
scanf("%d", &n);
memset(in, , sizeof(in));
memset(out, , sizeof(out));
memset(vis, false, sizeof(vis));
int u, v;
st = ;
for (int i = ; i <n; i++)
cin >> str[i];
sort(str, str + n);//从小到大排序
for (int i = n - ; i >= ; i--)//因为链式前向星是逆序存图,所以反过来从大到小读入。
{
u = str[i][] - 'a' + ;
v = str[i][str[i].length() - ] - 'a' + ;
vis[u] = vis[v] = true;
addedge(u, v, i);
++in[v];
++out[u];
Union(u, v);
st = min(st, min(u, v));//找出最小的那个点来
}
if (!check(st))
puts("***");
else
{
top = ;
memset(vis2, false, sizeof(vis2));
dfs(st);
for (int i = top - ; i > ; i--)
cout << str[edge[ans[i]].id] << ".";
cout << str[edge[ans[]].id] << endl;
} }
return ;
}
有向图的欧拉路径POJ2337的更多相关文章
- poj 2337 有向图输出欧拉路径
Catenyms Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10186 Accepted: 2650 Descrip ...
- poj2337 欧拉路径
poj2337 这道题昨天晚上开始做,今天才A.但是问题想透了, 发现其实没那么难 题目大意: 给你一些单词,如果一个单词的末尾字符与另一个单词首字符相同,则两个的单词可以连接.问是否可以把所有单词连 ...
- HDU 1116 Play on Words(欧拉路径(回路))
http://acm.hdu.edu.cn/showproblem.php?pid=1116 题意:判断n个单词是否可以相连成一条链或一个环,两个单词可以相连的条件是 前一个单词的最后一个字母和后一个 ...
- Play on Words UVA - 10129 欧拉路径
关于欧拉回路和欧拉路径 定义:欧拉回路:每条边恰好只走一次,并能回到出发点的路径欧拉路径:经过每一条边一次,但是不要求回到起始点 ①首先看欧拉回路存在性的判定: 一.无向图每个顶点的度数都是偶数,则存 ...
- POJ 1637 混合图的欧拉回路判定
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
- SPOJ Play on Words
传送门 WORDS1 - Play on Words #graph-theory #euler-circuit Some of the secret doors contain a very inte ...
- Sightseeing tour
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8276 Accepted: 3489 Desc ...
- POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...
随机推荐
- jQuery运维开发之第十七天
JQuery 学习参考网址http://jquery.cuishifeng.cn/ python中叫模块,在DOM/BOM/Javascript中叫类库 现在的JQ版本有:1.x 2.x 3.x 建议 ...
- Linux——搭建PHP开发环境第三步:mysql
原文链接:http://www.jb51.net/article/83647.htm 1.第一步就是看linu是否安装了mysql,经过rpm -qa|grep mysql查看到centos下安装了m ...
- iOS: 获取文件路径
iOS: 获取文件路径 // 例如 - (NSString *)applicationDocumentsDirectory { return [NSSearchPathForDirectories ...
- WPF学习笔记-自定义窗口
代码部分 <Style x:Key="for_noresize_window" TargetType="{x:Type Window}"> < ...
- Eclipse中查找接口实现类快捷键
就是点击某个接口某个方法名字的时候,直接跳到它的某个实现类里面,一般我们习惯对着那个接口的方法按F3,但是这会直接跳到接口类的源码中,那么呵呵,我们换一个ctrl+T 然后自己选择一下实现类就进去了. ...
- OPENFILER记下,有空再玩之,ISCSI,以后网络起来了,速度还是应该可以的
- Keil MDK与h-jtag联调
keil MDK也是可以借助h-jtag进行单步调试,写出来与大家一起分享一下. keil MDK编译器使用V4.01版本,下载地址:http://www.embedinfo.com/down-lis ...
- TinyMCE下载及使用
1.TinyMCE下载 官方下载网址:http://www.tinymce.com/ 简体中文语言包下载:http://www.tinymce.com/i18n/index.php?ctrl=lang ...
- PlatformTransactionManager
Spring Boot 使用事务非常简单,首先使用注解 @EnableTransactionManagement 开启事务支持后,然后在访问数据库的Service方法上添加注解 @Transactio ...
- 【HDOJ】1903 Exchange Rates
水DP.精度很坑. /* hdoj 1903 */ #include <cstdio> #include <cstring> #include <cstdlib> ...