《programming computer vision with python 》中denoise 算法有误,从网上好了可用的代码贴上,以便以后使用。

书中错误的代码:

def denoise(im,U_init,tolerance=0.1,tau=0.125,tv_weight=100):
m,n = im.shape
U = U_init
Px = im
Py = im
error = 1 while (error > tolerance):
Uold = U
GradUx = roll(U,-1,axis=1)-U
GradUy = roll(U,-1,axis=0)-U PxNew = Px + (tau/tv_weight)*GradUx
PyNew = Py + (tau/tv_weight)*GradUy
NormNew = maximum(1,sqrt(PxNew**2+PyNew**2)) Px = PxNew/NormNew
py = PyNew/NormNew RxPx = roll(Px,1,axis=1)
RyPy = roll(Py,1,axis=0) DivP = (Px - RxPx) + (Py - RyPy)
U = im + tv_weight*DivP error = linalg.norm(U-Uold)/sqrt(n*m)
return U,im-U

网上可用的代码:

def denoise(im, U_init, tolerance=0.1, tau=0.125, tv_weight=100):
""" An implementation of the Rudin-Osher-Fatemi (ROF) denoising model
using the numerical procedure presented in Eq. (11) of A. Chambolle
(2005). Implemented using periodic boundary conditions
(essentially turning the rectangular image domain into a torus!). Input:
im - noisy input image (grayscale)
U_init - initial guess for U
tv_weight - weight of the TV-regularizing term
tau - steplength in the Chambolle algorithm
tolerance - tolerance for determining the stop criterion Output:
U - denoised and detextured image (also the primal variable)
T - texture residual""" #---Initialization
m,n = im.shape #size of noisy image U = U_init
Px = im #x-component to the dual field
Py = im #y-component of the dual field
error = 1
iteration = 0 #---Main iteration
while (error > tolerance):
Uold = U #Gradient of primal variable
LyU = vstack((U[1:,:],U[0,:])) #Left translation w.r.t. the y-direction
LxU = hstack((U[:,1:],U.take([0],axis=1))) #Left translation w.r.t. the x-direction GradUx = LxU-U #x-component of U's gradient
GradUy = LyU-U #y-component of U's gradient #First we update the dual varible
PxNew = Px + (tau/tv_weight)*GradUx #Non-normalized update of x-component (dual)
PyNew = Py + (tau/tv_weight)*GradUy #Non-normalized update of y-component (dual)
NormNew = maximum(1,sqrt(PxNew**2+PyNew**2)) Px = PxNew/NormNew #Update of x-component (dual)
Py = PyNew/NormNew #Update of y-component (dual) #Then we update the primal variable
RxPx =hstack((Px.take([-1],axis=1),Px[:,0:-1])) #Right x-translation of x-component
RyPy = vstack((Py[-1,:],Py[0:-1,:])) #Right y-translation of y-component
DivP = (Px-RxPx)+(Py-RyPy) #Divergence of the dual field.
U = im + tv_weight*DivP #Update of the primal variable #Update of error-measure
error = linalg.norm(U-Uold)/sqrt(n*m);
iteration += 1; print iteration, error #The texture residual
T = im - U
print 'Number of ROF iterations: ', iteration return U,T

测试代码:

from numpy import *
from numpy import random
from scipy.ndimage import filters
import rof
from scipy.misc import imsave im = zeros((500,500))
im[100:400,100:400] = 128
im[200:300,200:300] = 255 im = im + 30*random.standard_normal((500,500)) imsave('synth_ori.pdf',im) U,T = rof.denoise(im,im,0.07) G = filters.gaussian_filter(im,10) imsave('synth_rof.pdf',U)
imsave('synth_gaussian.pdf',G)

python去噪算法的更多相关文章

  1. Atitit.java图片图像处理attilax总结  BufferedImage extends java.awt.Image获取图像像素点image.getRGB(i, lineIndex); 图片剪辑/AtiPlatf_cms/src/com/attilax/img/imgx.javacutImage图片处理titit 判断判断一张图片是否包含另一张小图片 atitit 图片去噪算法的原理与

    Atitit.java图片图像处理attilax总结 BufferedImage extends java.awt.Image 获取图像像素点 image.getRGB(i, lineIndex); ...

  2. Python基础算法综合:加减乘除四则运算方法

    #!usr/bin/env python# -*- coding:utf-8 -*-#python的算法加减乘除用符号:+,-,*,/来表示#以下全是python2.x写法,3.x以上请在python ...

  3. 三维网格去噪算法(L0 Minimization)

    [He et al. 2013]文章提出了一种基于L0范数最小化的三角网格去噪算法.该思想最初是由[Xu et al. 2011]提出并应用于图像平滑,假设c为图像像素的颜色向量,▽c为颜色向量的梯度 ...

  4. 三维网格去噪算法(two-step framework)

    基于两步法的网格去噪算法顾名思义包含两个步骤:首先对网格表面的法向进行滤波,得到调整后的网格法向信息,然后根据调整后的法向更新顶点坐标位置,下面介绍三篇该类型的文章. [Sun et al. 2007 ...

  5. 三维网格去噪算法(bilateral filter)

    受图像双边滤波算法的启发,[Fleishman et al. 2003]和[Jones et al. 2003]分别提出了利用双边滤波算法对噪声网格进行光顺去噪的算法,两篇文章都被收录于当年的SIGG ...

  6. xsank的快餐 » Python simhash算法解决字符串相似问题

    xsank的快餐 » Python simhash算法解决字符串相似问题 Python simhash算法解决字符串相似问题

  7. python聚类算法实战详细笔记 (python3.6+(win10、Linux))

    python聚类算法实战详细笔记 (python3.6+(win10.Linux)) 一.基本概念:     1.计算TF-DIF TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库 ...

  8. python排序算法实现(冒泡、选择、插入)

    python排序算法实现(冒泡.选择.插入) python 从小到大排序 1.冒泡排序: O(n2) s=[3,4,2,5,1,9] #count = 0 for i in range(len(s)) ...

  9. Python C3 算法 手动计算顺序

    Python C3 算法 手动计算顺序   手动计算类继承C3算法原则: 以所求类的直接子类的数目分成相应部分 按照从左往右的顺序依次写出继承关系 继承关系第一个第一位,在所有后面关系都是第一个出现的 ...

随机推荐

  1. SpringMVC 学习笔记(十) 异常处理HandlerExceptionResolver

    Spring MVC 通过 HandlerExceptionResolver 处理程序的异常,包含 Handler 映射.数据绑定以及目标方法运行时发生的异常. SpringMVC 提供的 Handl ...

  2. Altium Designer绘制mark点

    mark注:我之前是按照下面的文章去制作的,由于头一次制作没有经验,不是很成功 文章是正确的 只是我的一些配置出错了: 先看一下我们的板子: 关于错误mark点,主要是周边又一圈亮锡,, 原因大概是敷 ...

  3. UVA 11178 - Morley's Theorem 向量

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. UIButton UIBarButtonItem用法

    #pragma mark 快速创建一个item - (UIBarButtonItem *)itemWithNormal:(NSString *)normal highlighted:(NSString ...

  5. 【数学】概念的理解 —— 有序对(ordered pair)

    有序对 (a,b) 是一组对象,不同的顺序意味着不同的对象,(a,b)≠(b,a) 除非 a=b,正是因为对象的相对顺序是有着不同含义的,因此有时也称之为 2 维向量.与之相对的无序对(unorder ...

  6. IQueryFielter接口

    IQueryFilter基于属性查询过滤数据.需要定义一个where子句.可以指定要返回值的字段列表.如果没有指定列,将返回所有值.当需要根据属性值和属性的关系过滤数据时,使用该接口. 成员 AddF ...

  7. 百度富文本编辑器ueditor使用启示

    百度富文本编辑器ueditor使用启示 一.总结 一句话总结:使用工具,多去看官方demo,非常详细. 二.百度富文本编辑器ueditor使用启示 官方完整demo 官方完整demo对应的源代码 &l ...

  8. Android中的动画详解系列【1】——逐帧动画

    逐帧动画其实很简单,下面我们来看一个例子: <?xml version="1.0" encoding="utf-8"?> <animation ...

  9. C语言学习笔记:12_变量的存储方式和生存期

    /* * 12_变量的存储方式和生存期.c * * Created on: 2015年7月5日 * Author: zhong */ #include <stdio.h> #include ...

  10. 【poj 1704】Georgia and Bob

    Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9776 Accepted: 3222 Description Georgia a ...