[luogu2513 HAOI2009] 逆序对数列 (计数dp)
题目描述
对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?
输入输出格式
输入格式:
第一行为两个整数n,k。
输出格式:
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
输入输出样例
输入样例#1:
4 1
输出样例#1:
3
说明
样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
测试数据范围
30%的数据 n<=12
100%的数据 n<=1000,k<=1000
f[i][j] 表示i的排列有j个逆序对数的情况数
依次插入1,2,3,4......,n
插入第i个数时:
当插在0位置时逆序对增加(i-1)组,
当插在1位置时逆序对增加(i-2)组,
......
跟据以上想法推出出动规方程:
F(i,1,n) F(j,1,k) F(l,max(1,i-j),i)
f[i][j]+=f[i-1][j-(i-l)];
n^3过不了,用下前缀和优化即可
code:
//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std;
inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
}
inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
}
const int MOD=10000;
const int N=1010;
const int INF=0x3f3f3f3f;
int n,k;
int f[N][N];
int main() {
n=rd(),k=rd();
f[1][0]=1;
F(i,2,n) {
LL sum=0;
F(j,0,k) {
(sum+=f[i-1][j])%MOD;
f[i][j]=sum%MOD;
if(j-i+1>=0) ((sum-=f[i-1][j-i+1])+MOD)%MOD;
}
}
out(f[n][k]);
return 0;
}
[luogu2513 HAOI2009] 逆序对数列 (计数dp)的更多相关文章
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- BZOJ 2431: [HAOI2009]逆序对数列【dp】
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序 ...
- 【BZOJ 2431】 [HAOI2009] 逆序对数列 (DP)
Description 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数 ...
- 【洛谷 P2513】 [HAOI2009]逆序对数列(DP)
题目链接 这种求方案数的题一般都是\(dp\)吧. 注意到范围里\(k\)和\(n\)的范围一样大,\(k\)是完全可以更大的,到\(n\)的平方级别,所以这暗示了我们要把\(k\)写到状态里. \( ...
- BZOJ 2431 [HAOI2009]逆序对数列:dp 逆序对
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2431 题意: 给定n,k,问你有多少个由1~n组成的排列,使得逆序对个数恰好为k个. 题解 ...
- bzoj2431: [HAOI2009]逆序对数列(DP)
f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...
- [luoguP2513] [HAOI2009]逆序对数列(DP)
传送门 f[i][j]表示前i个数,逆序对数为j的答案 则DP方程为: f[1][0] = 1; for(i = 2; i <= n; i++) for(j = 0; j <= m; j+ ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
随机推荐
- Python 从入门到实践 - Web应用程序
一.创建项目 1.建立虚拟环境 python -m venv ll_env # 出现ll_env文件夹 2.激活虚拟环境 source ll_env/bin/activate # 要停止使用虚拟环境, ...
- vue使用SockJS实现webSocket通信
以前使用websocket都是使用 window.webSocket = new WebSocket('ws://' + config.webSocketUrl + '/webData/websock ...
- Nginx 配置 Gzip 压缩
打开配置文件 /etc/nginx/nginx.conf,取消掉以下的注释项: #gzip on; 取消后: gzip on; 在此配置后加上以下内容: gzip on; gzip_vary on; ...
- Java基础学习总结(37)——Java23中设计模式(Design Patterns)详解
设计模式(Design Patterns) --可复用面向对象软件的基础 设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了 ...
- Git学习总结(4)——我的Git忽略文件
*.bak *.txt *.vm .gitignore #svn .svn/ # built application files *.apk *.ap_ # files for the dex VM ...
- Profile 动态切换环境
一.多 Profile 文件我们在主配置文件编写的时候,文件名可以是 application-{profile}.properties/yml默认使用 application.properties 的 ...
- HelloWorld编译正常运行报noclassdeffounderror
修改环境变量classpath: 原理: classpath是搜索java类库的路径:当你输入命令“java HelloWorld“时,会根据classpath寻找HelloWorld.class:一 ...
- smartctl----硬盘状态监控
smartmontools介绍 smartmontools是一款开源的磁盘控制,监视工具,可以运行在Linux,Unix,BSD,Solaris,Mac OS,OS/2,Cygwin和Windows上 ...
- BA-siemens-apogee-ppcl
adapts函数的使用 常规控制风机及阀门的程序是使用PID来调节,但是自适应算法能更好的调节. 西门子的自适应调节函数adapts用法如下: 以下文章为网络转载,原文链接地址http://news. ...
- chrome打开网址但是没有地址栏
chrome打开网址但是没有地址栏 C:\Users\Administrator>C:\Users\Administrator\AppData\Local\Google\Chrome\Appli ...