题目描述

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

输入输出格式

输入格式:

第一行为两个整数n,k。

输出格式:

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

输入输出样例

输入样例#1:

4 1

输出样例#1:

3

说明

样例说明:

下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;

测试数据范围

30%的数据 n<=12

100%的数据 n<=1000,k<=1000

f[i][j] 表示i的排列有j个逆序对数的情况数

依次插入1,2,3,4......,n

插入第i个数时:

当插在0位置时逆序对增加(i-1)组,

当插在1位置时逆序对增加(i-2)组,

......

跟据以上想法推出出动规方程:

F(i,1,n) F(j,1,k) F(l,max(1,i-j),i)
f[i][j]+=f[i-1][j-(i-l)];

n^3过不了,用下前缀和优化即可

code:

//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std; inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
} inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
} const int MOD=10000;
const int N=1010;
const int INF=0x3f3f3f3f;
int n,k;
int f[N][N]; int main() {
n=rd(),k=rd();
f[1][0]=1;
F(i,2,n) {
LL sum=0;
F(j,0,k) {
(sum+=f[i-1][j])%MOD;
f[i][j]=sum%MOD;
if(j-i+1>=0) ((sum-=f[i-1][j-i+1])+MOD)%MOD;
}
}
out(f[n][k]);
return 0;
}

[luogu2513 HAOI2009] 逆序对数列 (计数dp)的更多相关文章

  1. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  2. BZOJ 2431: [HAOI2009]逆序对数列【dp】

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序 ...

  3. 【BZOJ 2431】 [HAOI2009] 逆序对数列 (DP)

    Description 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数 ...

  4. 【洛谷 P2513】 [HAOI2009]逆序对数列(DP)

    题目链接 这种求方案数的题一般都是\(dp\)吧. 注意到范围里\(k\)和\(n\)的范围一样大,\(k\)是完全可以更大的,到\(n\)的平方级别,所以这暗示了我们要把\(k\)写到状态里. \( ...

  5. BZOJ 2431 [HAOI2009]逆序对数列:dp 逆序对

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2431 题意: 给定n,k,问你有多少个由1~n组成的排列,使得逆序对个数恰好为k个. 题解 ...

  6. bzoj2431: [HAOI2009]逆序对数列(DP)

    f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...

  7. [luoguP2513] [HAOI2009]逆序对数列(DP)

    传送门 f[i][j]表示前i个数,逆序对数为j的答案 则DP方程为: f[1][0] = 1; for(i = 2; i <= n; i++) for(j = 0; j <= m; j+ ...

  8. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  9. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

随机推荐

  1. [总结-动态规划]经典DP状态设定和转移方程

    马上区域赛,发现DP太弱,赶紧复习补上. #普通DP CodeForces-546D Soldier and Number Game 筛法+动态规划 待补 UVALive-8078 Bracket S ...

  2. Mysql错误:#1054 - Unknown column '字段名' in 'field list'

    # 1054 - Unknown column '字段名' in 'field list' 第一个就是你的表中没有这个字段 另一个就是你的这个字段前后可能有空格!!!,去掉空格即可!

  3. Elasticsearch---基于scroll技术滚动搜索大量数据

    如果一次性要查出来比如10万条数据,那么性能会很差,此时一般会采取用scoll滚动查询,一批一批的查,直到所有数据都查询完处理完 使用scoll滚动搜索,可以先搜索一批数据,然后下次再搜索一批数据,以 ...

  4. H3C防火墙——回环流量问题(内网终端通过外网IP访问内部服务器)

    http://www.bubuko.com/infodetail-1533703.html

  5. Hadoop集群(第11期)_常用MySQL数据库命令

    1.系统管理 1.1 连接MySQL 格式: mysql -h主机地址 -u用户名 -p用户密码 举例: 例1:连接到本机上的MySQL. 首先在打开DOS窗口,然后进入目录 mysqlbin,再键入 ...

  6. CF922B Magic Forest

    CF922B Magic Forest 题意翻译 题目大意 给定一个正整数nn ,求满足如下条件的三元组(a,b,c)(a,b,c) 的个数: 1 \le a \le b \le c \le n1≤a ...

  7. cogs 1143. [石门中学2009] 切割树

    1143. [石门中学2009] 切割树 ★   输入文件:treecut.in   输出文件:treecut.out   简单对比时间限制:1 s   内存限制:128 MB treecut 题目描 ...

  8. Windows-hosts文件地址

    C:\Windows\System32\drivers\etc # Copyright (c) - Microsoft Corp. # # This is a sample HOSTS file us ...

  9. 使用 from import方法导入Python模块

    比如我们导入一个数学计算的模块 math: >>> import math>>> print math<module 'math' (built-in)> ...

  10. 嵌入式linux和pc机的linux对照

    linux本身具备的非常大长处就是稳定,内核精悍,执行时须要的资源少.嵌入式linux和普通linux并无本质差别. 在嵌入式系统上执行linux的一个缺点就是其核心架构没有又一次设计过,而是直接从桌 ...