题目描述

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

输入输出格式

输入格式:

第一行为两个整数n,k。

输出格式:

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

输入输出样例

输入样例#1:

4 1

输出样例#1:

3

说明

样例说明:

下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;

测试数据范围

30%的数据 n<=12

100%的数据 n<=1000,k<=1000

f[i][j] 表示i的排列有j个逆序对数的情况数

依次插入1,2,3,4......,n

插入第i个数时:

当插在0位置时逆序对增加(i-1)组,

当插在1位置时逆序对增加(i-2)组,

......

跟据以上想法推出出动规方程:

F(i,1,n) F(j,1,k) F(l,max(1,i-j),i)
f[i][j]+=f[i-1][j-(i-l)];

n^3过不了,用下前缀和优化即可

code:

//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std; inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
} inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
} const int MOD=10000;
const int N=1010;
const int INF=0x3f3f3f3f;
int n,k;
int f[N][N]; int main() {
n=rd(),k=rd();
f[1][0]=1;
F(i,2,n) {
LL sum=0;
F(j,0,k) {
(sum+=f[i-1][j])%MOD;
f[i][j]=sum%MOD;
if(j-i+1>=0) ((sum-=f[i-1][j-i+1])+MOD)%MOD;
}
}
out(f[n][k]);
return 0;
}

[luogu2513 HAOI2009] 逆序对数列 (计数dp)的更多相关文章

  1. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  2. BZOJ 2431: [HAOI2009]逆序对数列【dp】

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序 ...

  3. 【BZOJ 2431】 [HAOI2009] 逆序对数列 (DP)

    Description 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数 ...

  4. 【洛谷 P2513】 [HAOI2009]逆序对数列(DP)

    题目链接 这种求方案数的题一般都是\(dp\)吧. 注意到范围里\(k\)和\(n\)的范围一样大,\(k\)是完全可以更大的,到\(n\)的平方级别,所以这暗示了我们要把\(k\)写到状态里. \( ...

  5. BZOJ 2431 [HAOI2009]逆序对数列:dp 逆序对

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2431 题意: 给定n,k,问你有多少个由1~n组成的排列,使得逆序对个数恰好为k个. 题解 ...

  6. bzoj2431: [HAOI2009]逆序对数列(DP)

    f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...

  7. [luoguP2513] [HAOI2009]逆序对数列(DP)

    传送门 f[i][j]表示前i个数,逆序对数为j的答案 则DP方程为: f[1][0] = 1; for(i = 2; i <= n; i++) for(j = 0; j <= m; j+ ...

  8. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  9. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

随机推荐

  1. 跳出$.each()循环

    return false:将停止循环 ,跳出eachreturn true:跳至下一个循环(就像在普通的循环中使用'continue').

  2. ExtJs之Ext.XTemplate:模板成员函数

    <!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta http-equiv ...

  3. jquery日历插件FullCalendar使用技巧

    原文链接:http://blog.csdn.net/u013493957/article/details/44920341   FullCalendar是一款基于jquery的日历控件,它有着很强大的 ...

  4. “XXX.Index”不扩展类“System.Web.UI.Page”,因此此处不同意的问题

    "XXX.Index"不扩展类"System.Web.UI.Page",因此此处不同意的问题 原因:设计页面继承的路径和后台.cs页面类的路径不一致造成的 看下 ...

  5. Android 运行 gson.toJson(object) 报java.lang.StackOverflowError异常

    如以下的代码,运行后报java.lang.StackOverflowError错误: MusicSavedInfo musicSavedInfo=new MusicSavedInfo(currentS ...

  6. Highcharts数据表示(2)

    Highcharts数据表示(2) 数据节点是图表中最小的元素.每一个数据节点都是一个数据单元. 它确定了图表中一个图形元素的各种信息.一个数据节点通常包含下面三类信息: 1.坐标位置信息 因为Hig ...

  7. 婚礼上的谎言(C++实现)

    #include<iostream> using namespace std; void main(void) { int a,b,c; char DD,EE,FF; for (a=1;a ...

  8. ELF文件格式定义

    ELF(Executable and Linking Format)是一种对象文件的格式,用于定义不同类型的对象文件(Object files)中都放了什么东西.以及都以什么样的格式去放这些东西.它自 ...

  9. Spring《五》集合的注入方式

    List.Set.Map.Properties 1.List <property name="msg"> <list> <value>gf< ...

  10. 高并发之后端优化(PHP)

    页面静态化 使用模板引擎 可以使用Smarty的缓存机制生成静态HTML缓存文件 $smarty->cachedir=$ROOT·"/cache"://缓存目录 $smart ...