2021.08.16 P1260 工程规划(差分约束)

重点:

1.跑最短路是为了满足更多约束条件。

P1260 工程规划 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题意:

造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000)。由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是很容易确定的(但这些起始时间都是非负整数,因为它们必须在整个工程开始后启动)。例如:挖掘完成后,紧接着就要打地基;但是混凝土浇筑完成后,却要等待一段时间再去掉模板。

这种要求就可以用M(5≤m≤5000)个不等式表示,不等式形如Ti-Tj≤b代表i和j的起始时间必须满足的条件。每个不等式的右边都是一个常数b,这些常数可能不相同,但是它们都在区间(-100,100)内。

你的任务就是写一个程序,给定像上面那样的不等式,找出一种可能的起始时间序列T1,T2,…,Tn,或者判断问题无解。对于有解的情况,要使最早进行的那个任务和整个工程的起始时间相同,也就是说,T1,T2,…,Tn中至少有一个为0。

分析及代码:

//T_i-T_j<=b -> T_i<=T_j+b,咱来跑个最短路
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std; const int N=1010;
const int inf=0x3f3f3f;
int n,m,cnt,head[N],vis[N],tot[N],dis[N];
struct node{
int to,next,val;
}a[N<<1];
//呵呵了,题上标的m<=5000,我怎么没看到!第一次RE3个点,第二次改为5000依旧RE一个点,忽然想起来我加了超级源点,shitf!
struct nodei{
int pos,dis;
bool operator <(const nodei &b)const{
return dis>b.dis;
}
}; inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')w=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0'){
s=s*10+ch-'0';
ch=getchar();
}
return s*w;
}
void add(int u,int v,int w){
++cnt;
a[cnt].to=v;
a[cnt].next=head[u];
a[cnt].val=w;
head[u]=cnt;
}
void spfa(int start){
memset(dis,inf,sizeof(dis));
priority_queue<nodei>q;
dis[start]=0;
vis[start]=tot[start]=1;
q.push({start,0});
while(!q.empty()){
nodei tmp=q.top();q.pop();
int x=tmp.pos;
vis[x]=0;
++tot[x];
if(tot[x]>=n){
cout<<"NO SOLUTION";
return ;
}
for(int i=head[x];i;i=a[i].next){
int v=a[i].to;
if(dis[v]>dis[x]+a[i].val){
dis[v]=dis[x]+a[i].val;
if(!vis[v])q.push({v,dis[v]}),vis[v]=1;
}
}
}
int minn=inf;
for(int i=1;i<=n;i++)minn=min(minn,dis[i]);
for(int i=1;i<=n;i++)cout<<dis[i]-minn<<endl;
} int main(){
n=read();m=read();
for(int i=1;i<=m;i++){
int u,v,w;
u=read();v=read();w=read();
//cout<<u<<" "<<v<<" "<<w<<endl;//
add(v,u,w);
}
for(int i=1;i<=n;i++)add(n+1,i,0);
spfa(n+1);
return 0;
}

2021.08.16 P1260 工程规划(差分约束)的更多相关文章

  1. P1260 工程规划 (差分约束)

    题目链接 Solution 差分约束. 差分约束似乎精髓就两句话: 当我们把不等式整理成 \(d[a]+w<=d[b]\) 时,我们求最长路. 整理成 \(d[a]+w>=d[b]\) 时 ...

  2. 2021.08.16 P1078 文化之旅(最短路)

    2021.08.16 P1078 文化之旅(最短路) 题意: n个地,k个信仰,每个地都有自己的信仰,信仰之间会相互排斥,同信仰之间也会相互排斥,有m条路,问从s到t的最短距离是多少? 有一位使者要游 ...

  3. 2021.08.16 P1300 城市街道交通费系统(dfs)

    2021.08.16 P1300 城市街道交通费系统(dfs) P1300 城市街道交通费系统 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 城市街道交费系统最近创立了.一 ...

  4. 2021.08.16 P1363 幻象迷宫(dfs,我感受到了出题人浓浓的恶意)

    2021.08.16 P1363 幻象迷宫(dfs,我感受到了出题人浓浓的恶意) P1363 幻象迷宫 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 幻象迷宫可以认为是无限 ...

  5. 2021.07.23 P2474 天平(差分约束)

    2021.07.23 P2474 天平(差分约束) [P2474 SCOI2008]天平 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 已知A,B和每两个点点权,求点权i, ...

  6. 2021.07.23 P3275 糖果(差分约束)

    2021.07.23 P3275 糖果(差分约束) [P3275 SCOI2011]糖果 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.为了满足更多更多约束条件,合适地 ...

  7. luogu P1260 工程规划(luogu wa)don't know way

    题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000).由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是 ...

  8. 洛谷—— P1260 工程规划

    https://www.luogu.org/problem/show?pid=1260 题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000). ...

  9. 洛谷 P7515 - [省选联考 2021 A 卷] 矩阵游戏(差分约束)

    题面传送门 emmm--怎么评价这个题呢,赛后学完差分约束之后看题解感觉没那么 dl,可是现场为啥就因为种种原因想不到呢?显然是 wtcl( 先不考虑"非负"及" \(\ ...

随机推荐

  1. Azure DevOps (五) 推送流水线制品到流水线仓库

    上一篇我们成功创建了我们的第一条流水线,并且配置了阿里云的maven加速,这篇文章我们来研究一下如何把编译好的代码上传到azure的流水线制品仓库中 为后续我们进行发布做准备 首先打开我们上一次编辑的 ...

  2. 网络监听FTP明文口令实验

    一. 开启环境 1.登录FTP服务器. 2.启动FTP服务器 (1)打开FTP服务器.点击最左面绿色按钮,启动ftp服务器. (2)可以看到以下变化:ftp服务器启动.显示"FTP服务在线& ...

  3. Python GUI tkinter 学习笔记(一)

    第一个python程序 #!/usr/bin/python # -*- coding: UTF-8 -*- from Tkinter import * # 创建一个根窗口,其余的控件都在这个窗口之上 ...

  4. ES6中数组新增的方法-超级好用

    Array.find((item,indexArr,arr)=>{}) 掌握 找出第一个符合条件的数组成员. 它的参数是一个回调函数,对所有数组成员依次执行该回调函数. 直到找出第一个返回值为t ...

  5. Python 分形算法__代码里开出来的艺术之花

    1. 前言 分形几何是几何数学中的一个分支,也称大自然几何学,由著名数学家本华曼德勃罗( 法语:BenoitB.Mandelbrot)在 1975 年构思和发展出来的一种新的几何学. 分形几何是对大自 ...

  6. python 迭代器和生成器基础知识

    1.迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法--字符串.列表.元组.字典.集合都是可迭代的--可以被for循环的都是可迭代的 2. 迭代器有的好处是可以节省内存 3.生 ...

  7. 使用 rabbitmq 的场景?

    (1)服务间异步通信 (2)顺序消费 (3)定时任务 (4)请求削峰

  8. jQuery--事件案例(鼠标提示)

    1.文字提示 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww ...

  9. kafka 的高可用机制是什么?

    这个问题比较系统,回答出 kafka 的系统特点,leader 和 follower 的关系,消息 读写的顺序即可.

  10. hitcon_2017_ssrfme

    hitcon_2017_ssrfme 进入环境给出源码 <?php if (isset($_SERVER['HTTP_X_FORWARDED_FOR'])) { $http_x_headers ...