这一次,Python 真的有望告别 GIL 锁了?
Python 中有一把著名的锁——全局解释器锁(Global Interpreter Lock,简写 GIL),它的作用是防止多个本地线程同时执行 Python 字节码,这会导致 Python 无法实现真正的多线程执行。(注:本文中 Python 解释器特指 CPython)
这把锁在 Python 的早期发展中具有积极的作用(单核 CPU 时代),然而,它阻碍了 Python 在多核 CPU 上的并行编程,引起了开发者们与日俱增的诟病。
GIL 影响的主要是 CPU 密集型任务,比如科学计算与数值计算任务。
在最近发布的 PEP-703 中,它概括了 GIL 对科学计算(主要是 AI/ML)造成的四类问题:
- GIL 导致许多并行化操作难以表达(影响强化学习、DeepMind、医学治疗及生物研究等领域)
- GIL 影响了 Python 库的可用性(例如 PyTorch、scikit-learn、NumPy)
- GIL 导致无法充分利用 GPU 资源(例如计算机视觉任务)
- GIL 导致难以部署 Python AI 模型(例如基于神经网络的 AI 模型)
社区中想要移除 GIL 的呼声以及尝试,此起彼伏,绵绵不绝,但这个话题一直悬而未决。
抱怨、质疑、不满、不甘、期盼等这些诸多的情绪,不是那么容易平息的。然而,从一个积重已久的庞大的项目中移除一个根基性的设计,又谈何容易?
2023 新年刚过,这个话题又一次热了起来,又一轮对 GIL 的挑战开始了。
这一次,事情似乎有了新的转机,这次也许能成功了呢?
PEP-703 在今年 1 月 9 日新鲜出炉,虽然它目前仍是“草案”状态未被采纳,但是这份 PEP 的意义十分重大!
(注:每个 Python 学习者都应该基本了解 PEP,建议阅读《学习Python,怎能不懂点PEP呢?》)
这个 PEP 的作者是 Sam Gross,他是 nogil 项目的作者。Python猫的老读者应该有印象,我们在 2021 年曾翻译过他与 Python 核心开发者们的一次研讨会的纪要,这份纪要里概括了 nogil 的主要设计思路,同时回答了核心开发者们最为关注的约 20 个问题。
经过一年多时间的沉淀,nogil 项目现在终于形成了正式的 PEP,这意味着它被采纳进 Python 主分支的可能性变大了一些啦!
PEP 的标题是《使 CPython 的 GIL 成为可选项》(Making the Global Interpreter Lock Optional in CPython),内容详实,正文超过 1 万字,这个体量的 PEP 绝对够得上排在所有 PEP 的前十了。
简单而言,这份提案提议给 CPython 增加一个构建时配置项--disable-gil
,作用是构建出一个线程安全的无 GIL 的解释器。
为了实现无 GIL 的解释器,Python 底层的部分设计必须作出变更,内容可以概括成四类:
- 引用计数
- 内存管理
- 容器线程安全
- 锁和原子 API
如果这份 PEP 被采纳实现的话,它会带来一个不容忽视的问题:Python 将发布两个不同版本的解释器,而第三方库也要相应地开发/维护/发布两个版本的软件包。
PEP-703 的作者也考虑到了这个问题,他提出的解决方案是与 Anaconda 一起发布无 GIL 的 Python,同时在 conda 里集中发布管理那些兼容了新 Python 的库。
考虑到 Anaconda 在科学计算与数值计算领域的强大影响力,此举既能较好地发挥 nogil Python 的用处,又能减少用户及三方库开发者面对两种发行版时的割裂感。
值得注意的是,nogil 的 Python 还有一个更大的问题,那就是会影响单线程程序的性能。
基于 Python 3.11 版本,实现了有偏见的引用计数及永生对象后,Python 单线程性能会变慢 10%。
尽管这个数值在最新的 nogil 原型版本上可以降低到 5%,但是,另外至少还有两项难以规避的性能下降点:
- 2% - 全局的自由列表(主要是元组和浮点数自由列表)
- 1.5% - 集合中每个对象的互斥锁(字典、列表、队列)
单线程的代码才是最广泛的使用场景,可以说这会影响到每一个 Python 用户。任何试图移除 GIL 的项目都不可避免要面临这项挑战。
尽管存在着以上的两大问题,但 PEP-703 还是很有可取之处的。
比如,相比于 2015 年提出的著名的 Gilectomy 项目(由 GIL ectomy 两个单词组合而成,ectomy 是一个医学上的术语“切除术”),nogil 在单线程的性能上要快得多,同时可扩展性也更好。
比如,相比于 2021 年火热的“香农计划”的作者 Eric Snow 提出的 PEP-684 方案(给每个子解释器创建 GIL),后者一方面需要实现作为前提的多个 PEP(如 PEP-554、PEP-683),另一方面需要用户处理多子解释器间共享变量的麻烦。
在香农计划的《Python 3.12 目标》中,PEP-554 与 PEP-684 已经囊括在内了,版本目标是充分利用 Python 的子解释器,让子解释器使用各自的 GIL,从而实现多线程的并行。
好消息是,3.12 的计划跟本文的主角 PEP-703 并不冲突。事实上,它们的很多设计细节是一致的,也就是说,这两套对于 GIL 的改造方案是可以共存的,它们相互促进,事半功倍!
香农计划有 Python 之父 Guido van Rossum 站台,还有财大气粗的微软支持着一支豪华的团队投入开发(含 Guido 和 Eric Snow),因此,多解释器多 GIL 的方案很可能会更快落地。
而 PEP-703 有 PSF 首位全职开发者 Łukasz Langa 的倾力支持,社区的反响也不错,我觉得它今后落地的希望也挺大!
无论如何,这次香农计划和 PEP-703 掀起的对 GIL 的挑战,比以往所有的尝试都更猛烈,更有成功的可能,让人不由得心生欢欣之喜~~
但愿它们实现的一天不会太远吧。
最后,感谢阅读,如果你喜欢本文,请一定要点赞/分享支持哈~
这一次,Python 真的有望告别 GIL 锁了?的更多相关文章
- 操作系统/应用程序、操作中的“并发”、线程和进程,python中线程和进程(GIL锁),python线程编写+锁
并发编程前言: 1.网络应用 1)爬虫 直接应用并发编程: 2)网络框架 django flask tornado 源码-并发编程 3)socketserver 源码-并发编程 2.运维领域 1)自动 ...
- day 32 操作系统、线程和进程(GIL锁)
一.操作系统/应用程序 a. 硬件 - 硬盘 - CPU - 主板 - 显卡 - 内存 - 电源 ... b. 装系统(软件) - 系统就是一个由程序员写出来软件,该软件用于控制计算机的硬件,让他们之 ...
- python GIL锁问题
一.GIL是什么 官方解释: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple na ...
- Python进阶----GIL锁,验证Cpython效率(单核,多核(计算密集型,IO密集型)),线程池,进程池
day35 一丶GIL锁 什么是GIL锁: 存在Cpython解释器,全名:全局解释器锁.(解释器级别的锁) GIL是一把互斥锁,将并发运行变成串行. 在同一个进程下开启的多个线 ...
- Python 线程----线程方法,线程事件,线程队列,线程池,GIL锁,协程,Greenlet
主要内容: 线程的一些其他方法 线程事件 线程队列 线程池 GIL锁 协程 Greenlet Gevent 一. 线程(threading)的一些其他方法 from threading import ...
- Python高级笔记(一) -- GIL (全局解释器锁)
1. GIL概念 (cpython历史遗留问题) 概念? 对Python多线程的影响? 编写一个多线程抓取网页的程序? 阐述多线程抓取程序是否比单线程性能有提升, 并解释原因. GIL:全局解释器锁, ...
- python爬虫之多线程、多进程、GIL锁
背景: 我们知道多线程要比多进程效率更高,因为线程存在于进程之内,打开一个进程的话,首先需要开辟内存空间,占用内存空间比线程大.这样想也不怪,比如一个进程用10MB,开10个进程就得100MB的内存空 ...
- Python GIL锁
GIL全局解释器锁:为了解决多线程修改同一块数据. python的线程是调用操作系统的源生线程,启动时就是调用C语言的C源生接口,python调用C语言接口的线程去执行任务时,必须上下文对应关系传给C ...
- Python大法之告别脚本小子系列—信息资产收集类脚本编写(下)
作者:阿甫哥哥 原文来自:https://bbs.ichunqiu.com/article-1618-1.html 系列文章专辑:Python大法之告别脚本小子系列目录: 0×05 高精度字典生成脚本 ...
- python网络编程--线程GIL(全局解释器锁)
一:什么是GIL 在CPython,全局解释器锁,或GIL,是一个互斥体防止多个本地线程执行同时修改同一个代码.这把锁是必要的主要是因为当前的内存管理不是线程安全的.(然而,由于GIL存在,其他特性已 ...
随机推荐
- 流程编排、如此简单-通用流程编排组件JDEasyFlow介绍
作者:李玉亮 JDEasyFlow是企业金融研发部自研的通用流程编排技术组件,适用于服务编排.工作流.审批流等场景,该组件已开源(https://github.com/JDEasyFlow/jd-ea ...
- vue cli2安装
安装nodejs npm install -g npm npm自动更新到最新版本 node -v或者npm -v 查看nodejs是否安装成功 1 2 配置淘宝镜像 npm config set ...
- Go1.20 新版覆盖率方案解读
玩过Go覆盖率的同学当有所了解,Go的覆盖率方案最初的设计目标仅是针对单测场景,导致其局限性很大.而为了适配更多的场景,行业内各种博客.插件.黑科技介绍也层出不穷.当然,过去我们也开源过Go系统测试覆 ...
- ChatGPT能做什么?ChatGPT保姆级注册教程
最近 OpenAI 发布的 ChatGPT 聊天机器人很火,该聊天机器人可以在模仿人类说话风格的同时回答大量的问题. 在现实世界之中,例如数字营销.线上内容创作.回答客户服务查询,甚至可以用来帮助调试 ...
- 如何通过 C#/VB.NET 将 PDF 转为 Word
众所周知,PDF 文档支持特长文件,集成度和安全可靠性都较高,可有效防止他人对 PDF 内容进行更改,所以在工作中深受大家喜爱.但是在工作中,我们不可避免的会对 PDF 文档进行修改或再编辑,这时我们 ...
- json提取器和beanshell处理器组合,将提取的所有id以数组返回
1.添加json提取器 2.添加beanshell处理器,并编写脚本 String str1 = vars.get("buildid_ALL"); log.info(str1); ...
- Django重点及面试题
Django 简述python三大主流web框架 """ django 大而全,类似于航空母舰 但是有时候过于笨重 flask 小而精,类似于游骑兵(单行代码就可以起一个 ...
- 使用nodejs编写api接口并部署到服务器上
一.用node.js编写api接口 1.安装node环境,没有就去下载nodejs, 下载地址 2.创建一个node项目, 新建一个目录文件,例node_proxy 3.在新建的node项目执行npm ...
- TS学习笔记
类型 类型 例子 描述 number 1,2,-2 任意数字 string 'hi',"hi" 任意字符串 boolean true,false 布尔值或者true false 字 ...
- [机器学习] Yellowbrick使用笔记2-模型选择
在本教程中,我们将查看各种Scikit Learn模型的分数,并使用Yellowbrick的可视化诊断工具对它们进行比较,以便为我们的数据选择最佳的模型. 代码下载 文章目录 1 使用说明 1.1 模 ...