网络爬虫、Pandas
网络爬虫、Pandas
Pandas 是 Python 语言的一个扩展程序库,用于数据分析。
Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。
Pandas 名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。
Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)。
Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。
Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。
Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。
学习本教程前你需要了解
在开学习 Pandas 教程之前,我们需要具备基本的 Python 基础,如果你对 Python还不了解,可以阅读我们的教程:
Python 2.x 版本
Python 3.x 版本
Pandas 应用
Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。
数据结构
Series 是一种类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成。
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
Pandas安装安装
pandas需要基础环境是Python,开始前我们假定你已经安装了Python和Pip。
使用pip安装pandas:
Microsoft Windows [版本 10.0.19043.1645]
(c) Microsoft Corporation。保留所有权利。
C:\WINDOWS\system32>pip install pandas
Requirement already satisfied: pandas in c:\users\1234\anaconda3\lib\site-packages (1.3.4)
Requirement already satisfied: pytz>=2017.3 in c:\users\1234\anaconda3\lib\site-packages (from pandas) (2021.3)
Requirement already satisfied: numpy>=1.17.3 in c:\users\1234\anaconda3\lib\site-packages (from pandas) (1.20.3)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\1234\anaconda3\lib\site-packages (from pandas) (2.8.2)
Requirement already satisfied: six>=1.5 in c:\users\1234\anaconda3\lib\site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)
C:\WINDOWS\system32>
Pandas 数据结构 - DataFrame
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
DataFrame 构造方法如下:
pandas.DataFrame( data, index, columns, dtype, copy)
参数说明:
data:一组数据(ndarray、series, map, lists, dict 等类型)。
index:索引值,或者可以称为行标签。
columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
dtype:数据类型。
copy:拷贝数据,默认为 False。
Pandas DataFrame 是一个二维的数组结构,类似二维数组。
实例 - 使用列表创建
import pandas as pd
data = [['Google',10],['Runoob',12],['Wiki',13]]
df = pd.DataFrame(data,columns=['Site','Age'],dtype=float)
print(df)
以下实例使用 ndarrays 创建,ndarray 的长度必须相同, 如果传递了 index,则索引的长度应等于数组的长度。如果没有传递索引,则默认情况下,索引将是range(n),其中n是数组长度。
ndarrays 可以参考:NumPy Ndarray 对象
实例 - 使用 ndarrays 创建
import pandas as pd
data = {'Site':['Google', 'Runoob', 'Wiki'], 'Age':[10, 12, 13]}
df = pd.DataFrame(data)
print (df)
还可以使用字典(key/value),其中字典的 key 为列名:
实例 - 使用字典创建
import pandas as pd
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data)
print (df)
没有对应的部分数据为 NaN。
Pandas 可以使用 loc 属性返回指定行的数据,如果没有设置索引,第一行索引为 0,第二行索引为 1,以此类推:
实例
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
数据载入到 DataFrame 对象
df = pd.DataFrame(data)
返回第一行
print(df.loc[0])
返回第二行
print(df.loc[1])
网络爬虫、Pandas的更多相关文章
- 网络爬虫: 从allitebooks.com抓取书籍信息并从amazon.com抓取价格(3): 抓取amazon.com价格
通过上一篇随笔的处理,我们已经拿到了书的书名和ISBN码.(网络爬虫: 从allitebooks.com抓取书籍信息并从amazon.com抓取价格(2): 抓取allitebooks.com书籍信息 ...
- 网络爬虫: 从allitebooks.com抓取书籍信息并从amazon.com抓取价格(1): 基础知识Beautiful Soup
开始学习网络数据挖掘方面的知识,首先从Beautiful Soup入手(Beautiful Soup是一个Python库,功能是从HTML和XML中解析数据),打算以三篇博文纪录学习Beautiful ...
- Python网络爬虫实战:根据天猫胸罩销售数据分析中国女性胸部大小分布
本文实现一个非常有趣的项目,这个项目是关于胸罩销售数据分析的.是网络爬虫和数据分析的综合应用项目.本项目会从天猫抓取胸罩销售数据,并将这些数据保存到SQLite数据库中,然后对数据进行清洗,最后通过S ...
- Python 网络爬虫干货总结
Python 网络爬虫干货总结 爬取 对于爬取来说,我们需要学会使用不同的方法来应对不同情景下的数据抓取任务. 爬取的目标绝大多数情况下要么是网页,要么是 App,所以这里就分为这两个大类别来进行了介 ...
- Python初学者之网络爬虫(二)
声明:本文内容和涉及到的代码仅限于个人学习,任何人不得作为商业用途.转载请附上此文章地址 本篇文章Python初学者之网络爬虫的继续,最新代码已提交到https://github.com/octans ...
- 网络爬虫:使用Scrapy框架编写一个抓取书籍信息的爬虫服务
上周学习了BeautifulSoup的基础知识并用它完成了一个网络爬虫( 使用Beautiful Soup编写一个爬虫 系列随笔汇总 ), BeautifulSoup是一个非常流行的Python网 ...
- 网络爬虫: 从allitebooks.com抓取书籍信息并从amazon.com抓取价格(2): 抓取allitebooks.com书籍信息及ISBN码
这一篇首先从allitebooks.com里抓取书籍列表的书籍信息和每本书对应的ISBN码. 一.分析需求和网站结构 allitebooks.com这个网站的结构很简单,分页+书籍列表+书籍详情页. ...
- Atitit.数据检索与网络爬虫与数据采集的原理概论
Atitit.数据检索与网络爬虫与数据采集的原理概论 1. 信息检索1 1.1. <信息检索导论>((美)曼宁...)[简介_书评_在线阅读] - dangdang.html1 1.2. ...
- Java 网络爬虫获取页面源代码
原博文:http://www.cnblogs.com/xudong-bupt/archive/2013/03/20/2971893.html 1.网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网 ...
随机推荐
- Spring Boot 中的监视器是什么?
Spring boot actuator 是 spring 启动框架中的重要功能之一.Spring boot 监视器可帮助您访问生产环境中正在运行的应用程序的当前状态.有几个指标必须在生产环境中进行检 ...
- 服务注册和发现是什么意思?Spring Cloud 如何实现?
当我们开始一个项目时,我们通常在属性文件中进行所有的配置.随着越来越多的服务开发和部署,添加和修改这些属性变得更加复杂.有些服务可能会下降,而某些位置可能会发生变化.手动更改属性可能会产生问题.Eur ...
- 转载:STL四种智能指针
转载至:https://blog.csdn.net/K346K346/article/details/81478223 STL一共给我们提供了四种智能指针: auto_ptr.unique_ptr.s ...
- ctfhub web 前置技能(请求方式、302跳转、Cookie)
第一题:请求方式 打开环境分析题目发现当前请求方式为GET 查看源码发现需要将请求方式改为CTFHUB就可以 使用bp抓包 发送到repeater模块修改请求方式 即可得到flag 第二题:302跳转 ...
- ubuntu+ROS安装turtulebot3
0 简介 Turtlebot是一种室内移动机器人,搭载激光传感器,使机器有精确的距离感知能力.通过搭建仿真环境,可以在没有硬件支持的情况下进行仿真和编程,并熟悉ros系统.环境使Ubuntu16.04 ...
- Pandas怎样新增数据列
Pandas怎样新增数据列? 在进行数据分析时,经常需要按照一定条件创建新的数据列,然后进行进一步分析. 直接赋值 df.apply方法 df.assign方法 按条件选择分组分别赋值 0.读取csv ...
- CSS3渐变效果工具
推荐一个css3渐变效果工具,觉得有帮助的可以收藏下. 工具链接 CSS3 渐变(gradients)可以让你在两个或多个指定的颜色之间显示平稳的过渡.CSS3 定义了两种类型的渐变(gradient ...
- vue入门文章
本来想自己写一篇关于vue入门的文章.但是看到链接的文章后,觉得写得太详细了,实在有保存下来的必要.后面可能在这篇文章基础上,有所内容的增加. CSS预处理器 定义了一种新的专门的编程语言,编译后成正 ...
- python-输入列表,求列表元素和(eval输入应用)
在一行中输入列表,输出列表元素的和. 输入格式: 一行中输入列表. 输出格式: 在一行中输出列表元素的和. 输入样例: [3,8,-5] 输出样例: 6 代码: a = eval(input()) t ...
- java中为什么接口中的属性都默认为static和final?
1)为什么接口中的属性都默认为static和final?Sun公司当初为什么要把java的接口设计发明成这样?[新手可忽略不影响继续学习]答:马克-to-win:接口中如果可能定义非final的变量的 ...