P3834

主席树模板,求区间第k小。

 1 #include <bits/stdc++.h>
2 using namespace std;
3 #define lc tr[i].ch[0]
4 #define rc tr[i].ch[1]
5 #define Lc tr[j].ch[0]
6 #define Rc tr[j].ch[1]
7 #define mid ((l + r) >> 1)
8 const int N = 2e5 + 10;
9 int n, m, a[N], b[N];
10 int cnt, rt[N];
11 struct node {
12 int num, ch[2];
13 }tr[N * 20];
14 void update(int &i, int j, int l, int r, int k) {
15 i = ++cnt;//编号
16 tr[i] = tr[j];//复制之前版本
17 ++ tr[i].num;
18 if (l == r) return ;
19 if (k <= mid) update(lc, Lc, l, mid, k);
20 else update(rc, Rc, mid + 1, r, k);
21 }
22 int query(int i, int j, int l, int r, int k) {
23 if (l == r) return l;//返回下标
24 int s = tr[Lc].num - tr[lc].num;
25 if (k <= s) return query(lc, Lc, l, mid, k);
26 else return query(rc, Rc, mid + 1, r, k - s);
27 }
28 int main() {
29 scanf("%d %d", &n, &m);
30 for (int i = 1; i <= n; i ++) {
31 scanf("%d", &a[i]);
32 b[i] = a[i];
33 }
34 sort(b + 1, b + n + 1);
35 int tot = unique(b + 1, b + n + 1) - b - 1;
36 cnt = 0, rt[0] = 0;
37 for (int i = 1; i <= n; i ++)
38 update(rt[i], rt[i - 1], 1, tot, lower_bound(b + 1, b + tot + 1, a[i]) - b);
39 int x, y, k;
40 while (m --) {
41 scanf("%d %d %d", &x, &y, &k);
42 printf("%d\n", b[query(rt[x - 1], rt[y], 1, tot, k)]);
43 }
44 return 0;
45 }

P3834 【模板】可持久化线段树 2的更多相关文章

  1. 洛谷P3834 [模板]可持久化线段树1(主席树) [主席树]

    题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定 ...

  2. 【洛谷P3834】(模板)可持久化线段树 1(主席树)

    [模板]可持久化线段树 1(主席树) https://www.luogu.org/problemnew/show/P3834 主席树支持历史查询,空间复杂度为O(nlogn),需要动态开点 本题用一个 ...

  3. 【洛谷 P3834】 可持久化线段树1(主席树)

    题目链接 主席树=可持久化权值线段树. 如果你不会可持久化线段树,请右转 如果你不会权值线段树,请自行脑补,就是线段树维护值域里有多少个数出现. 可持久化线段树是支持查询历史版本的. 我们对每个数都进 ...

  4. 【Luogu P3834】可持久化线段树(主席树)

    Luogu P3834 可持久化数据结构就是支持在历史版本上进行查询和修改操作的数据结构. 主席树就是对线段树的改进,使之可持久化. 前置知识:动态开点线段树 我们利用权值(值域)线段树统计区间内的数 ...

  5. 洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)

    题目链接 //离散化后范围1~cnt不要错 #include<cstdio> #include<cctype> #include<algorithm> //#def ...

  6. [学习笔记] 可持久化线段树&主席树

    众所周知,线段树是一个非常好用也好写的数据结构, 因此,我们今天的前置技能:线段树. 然而,可持久化到底是什么东西? 别急,我们一步一步来... step 1 首先,一道简化的模型: 给定一个长度为\ ...

  7. 洛谷P3834【模板】可持久化线段树 1(主席树)

    题目背景 这是个非常经典的主席树入门题--静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输 ...

  8. HDU 2665.Kth number-可持久化线段树(无修改区间第K小)模板 (POJ 2104.K-th Number 、洛谷 P3834 【模板】可持久化线段树 1(主席树)只是输入格式不一样,其他几乎都一样的)

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. 题解 P3834 【【模板】可持久化线段树 1(主席树)】

    可持久化线段树的前置知识是权值线段树,但是你不学也没有太大的关系因为思想不是很难理解. 可持久化线段树支持历史记录查询,这是它赖以解题的方法. 在本题中思路是建立n颗线段树,然后对于每次询问,考虑其中 ...

  10. Luogu P3919 【模板】可持久化数组 可持久化线段树

    其实就是可持久化线段树的模板题线段树不会看这里 #include<bits/stdc++.h> ; using namespace std; ]; ],rc[N*],val[N*],cnt ...

随机推荐

  1. 【MySQL 8】Generated Invisible Primary Keys(GIPK)

    从MySQL 8.0.30开始,MySQL支持在GIPK模式下运行时生成不可见的主键.在这种模式下运行时,对于任何在没有显式主键的情况下创建的InnoDB表,MySQL服务器会自动将生成的不可见主键 ...

  2. YII XSS(跨站脚本攻击)

    \Yii::$app->response->headers->add('X-XSS-Protection','0');//表示关闭YII的跨站脚本过滤//http://www.fro ...

  3. 8月份的.NET Conf 活动 专注于 .NET MAUI

    .NET Conf:Focus on MAUI 是一个为期一天的免费直播活动,将于太平洋时间 8 月 9 日上午 9 点开始,来自社区和 Microsoft 团队的演讲者们将分享使用MAUI .了解. ...

  4. Odoo14 groups && rule

    # Odoo14 groups && rule # admin账户以及权限的来源: # admin创建代码在:odoo/odoo/addons/base/data/res_users_ ...

  5. 查找默认安装的python路径,并输出到 FindPythonPathX_output.txt

    在python程序设计教学中,在汉化IDEL时.为PyCharm项目设置解释器时,经常需要查找python安装路径.对老手来说很简单,但对很多刚开始学习编程的学生来说,则很困难.所以,编写了一个批处理 ...

  6. JAVA语言基础组成(1)

    JAVA语言基础组成 关键字 关键字的定义和特点 定义:被Java语言赋予了特殊含义的单词 特点:关键字中所有字母都为小写 用于定义数据类型的关键字 class interface byte int ...

  7. virtual box 安装虚拟机如何全屏

    最近由于要进行微信小程序的开发.可恶的腾讯狗没有提供linux版的开发工具!不得以安装虚拟机!暗号虚拟机后发现win10的界面实在是太小,于是乎去解决这个问题!其实很简单,一般来是说直接点虚拟机面板上 ...

  8. java-XML使用

    XML文件一.XML用途:指可扩展标记语言(EXtensible Markup Language),是独立于软件和硬件的信息传输工具,应用于 web 开发的许多方面,常用于简化数据的存储和共享.二.在 ...

  9. ASP.NET Core 6框架揭秘实例演示[33]:异常处理高阶用法

    NuGet包"Microsoft.AspNetCore.Diagnostics"中提供了几个与异常处理相关的中间件,我们可以利用它们将原生的或者定制的错误信息作为响应内容发送给客户 ...

  10. Spring5事务管理

    事务管理是什么? 相当于过滤器,如果这一进程中上一个操作正常执行完后提交数据已经发生改变,但是下一个操作中出现了异常,这样就会影响数据的查看. 典型例子:银行转账,甲方已经转钱给乙方(甲方已扣钱),乙 ...