problem

674. Longest Continuous Increasing Subsequence

solution

class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
int res = , cnt = , cur = INT_MAX;
for(auto num:nums)
{
if(num>cur) cnt++;
else cnt = ;
res = max(res, cnt);
cur = num;
}
return res;
}
};

solution2:

class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
int res = , cnt = ;
for(int i=; i<nums.size(); ++i)
{
if(i== || nums[i]>nums[i-]) res = max(res, ++cnt);
else cnt = ;
}
return res;
}
};

参考

1. Leetcode_easy_674. Longest Continuous Increasing Subsequence;

2. Grandyang;

【Leetcode_easy】674. Longest Continuous Increasing Subsequence的更多相关文章

  1. 【LeetCode】674. Longest Continuous Increasing Subsequence 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 空间压缩DP 日期 题目地址:https: ...

  2. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  3. [LeetCode] 674. Longest Continuous Increasing Subsequence 最长连续递增序列

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  4. LeetCode 674. Longest Continuous Increasing Subsequence (最长连续递增序列)

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  5. [Leetcode]674. Longest Continuous Increasing Subsequence

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  6. [LeetCode&Python] Problem 674. Longest Continuous Increasing Subsequence

    Given an unsorted array of integers, find the length of longest continuousincreasing subsequence (su ...

  7. 674. Longest Continuous Increasing Subsequence最长连续递增子数组

    [抄题]: Given an unsorted array of integers, find the length of longest continuous increasing subseque ...

  8. 674. Longest Continuous Increasing Subsequence@python

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence (s ...

  9. LeetCode 674. Longest Continuous Increasing Subsequence最长连续递增序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest continuous increasing subsequenc ...

随机推荐

  1. Linux中drwxr-xr-x.的意思和权限

    转载:https://blog.csdn.net/weixin_39209728/article/details/79729885 读(read),写(write),执行r(recute)简写即为(r ...

  2. 金蝶二次开发C#

    1 建立C#类库项目 2 引用EBOS组建Kingdee.K3.BOS.PlugInModel 3 示例代码 usingSystem; usingSystem.Collections.Generic; ...

  3. Web前端 --- 前端基础简介

    目录 web端 HTTP协议 web端 1.前端,后端 什么是前端 任何与用户直接打交道的操作界面,都可以称之为前端, eg:电脑界面 手机界面 什么是后端 真正的幕后操作者 2.前端学习的历程 HT ...

  4. 基于TCP协议套接字,服务端实现接收客户端的连接并发

    基于TCP协议套接字,服务端实现接收客户端的连接并发 服务端 import socket from multiprocessing import Process server=socket.socke ...

  5. TDOA 基础之 双曲线

    TDOA 的算法基础就是时间差,根据时间差换算出距离差,后面的数学理论知识就是双曲线交点问题. 双曲线方程是2次方程,解算曲线交点也就是两个2次方程求解. 首先看双曲线定义(百度百科): 双曲线(Hy ...

  6. Yarn 配置阿里源

    1.查看一下当前源 yarn config get registry 2.切换为淘宝源 yarn config set registry https://registry.npm.taobao.org ...

  7. MondoDB介绍 Python与MongoDB用法,安装PyMongo

    http://blog.csdn.net/t_ells/article/details/50265889 MongoDB最新版本下载在官网的DownLoad菜单下:http://www.mongodb ...

  8. RabbitMQ的5种模式

    队列截图,去rabbitMq.com去找学习文档 =========================================================================== ...

  9. loj #2316

    最短路 + 记忆化 记忆化搜索更容易实现 #include <iostream> #include <cstdio> #include <algorithm> #i ...

  10. 数据结构实验之图论二:图的深度遍历(SDUT 2107)(简单DFS)

    题解:图的深度遍历就是顺着一个最初的结点开始,把与它相邻的结点都找到,也就是一直往下搜索直到尽头,然后在顺次找其他的结点. #include <bits/stdc++.h> using n ...