# 首先是模块的导入
"""
os模块是处理文件夹用的
PIL模块是用来处理图片的
"""
import tensorflow as tf
import os
from PIL import Image path = "tensorflow_application/jpg" # 这是上述文件结构的主文件夹路径
filename = os.listdir(path) # 作用是遍历path文件夹下的文件,返回的是001和002文件夹构成的一个列表
writer = tf.python_io.TFRecordWriter("tensorflow_application/train.tfrecords") # 将TFRecordWriter实例化,用于文件的写操作。其中的路径是tfrecords文件的存放路径,这个路径并不需要实现建立,代码会自动生成 for name in filename:
class_path = path + os.sep + name # 得到每一类的路径,即001文件夹和002文件夹的路径,其中的os.sep返回的是一个符号,即'//',这是路径中的一个符号而已,起到连接作用,构成此文件夹的完整路径
for img_name in os.listdir(class_path):
img_path = class_path + os.sep + img_name # 同上,得到此文件夹下的每一张图片的完整路径,用于后续的图片提取并处理
img = Image.open(img_path) # 取出图片
img = img.resize((500, 500)) # 改变图片大小,大小视具体的网络要求而定,不同的网络对输入图片的大小并不完全相同。这里我暂且将图片变为500*500的大小
img_raw = img.tobytes() # 这里将图片矩阵变为字符串形式进行存储,因为TFRecords能够保存的只能是二进制数据,因此需要将数组转换为二进制形式
# 下面是关键的步骤,将数据填入到Example协议内存块中,最终生成TFRecords文件。TFRecords文件就是通过一个包含着二进制文件的数据文件,将特征和标签进行保存便于TensorFlow读取
"""
一个tf.train.Example,即Example协议内存块,包含着若干数据特征(Features),而Features
中又包含着Feature字典。任何一个Feature中又包含着FloatList, Int64List或BytesList,本例
中使用到了其中两种数据格式,即Int64List和BytesList,需要注意的是value后跟的值需要为
列表形式,所以加上了方括号
"""
example = tf.train.Example(
features = tf.train.Features(
feature={
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[name])),
"image": tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))))
}
serialized = example.SerializeToString() # 先将样本进行序列化操作
writer.write(serialized) # 对序列化操作后的变量进行写操作,即生成最终的tfrecords文件

  接下来需要做的便是读取生成的tfrecords文件,在神经网络中,需要将tfrecords文件中的image和label读取出来,然后将其传递给图。

# 使用的模块还是tensorflow
import tensorflow as tf filename = "tensorflow_application/train.tfrecords" # 这是上面生成的tfrecords文件
filename_queue = tf.train.string_input_producer([filenname]) # 建立一个队列,其中的参数为tfrecords文件的路径 reader = tf.TFRecordReader() # 实例化读操作,建立读取器
_, serialized_example = reader.read(filename_queue) # 返回文件名和文件
"""
通过parse_single_example解析器解析,将Example协议内存块解析为张量(Tensor),然后使用
解码器tf.decode_raw解码
"""
features = tf.parse_single_example(serialized_example,
features={
"label": tf.FixedLenFeature([], tf.int64),
"image": tf.FixedLenFeature([], tf.string)
})
img = tf.decode_raw(features["image"], tf.uint8) # 使用tf.decode_raw解码
img = tf.reshape(img, [500, 500, 3]) # 重构图片的大小为500*500*3 img = tf.cast(img, tf.float32) * (1. / 128) - 0.5
label = tf.cast(features["label"], tf.int32) """
上面将img和label从tfrecords文件中读取了出来,但是如果需要将数据取出供
图使用,还需要使用tf.train.shuffle_batch
shuffle_batch的主要参数为:
1. tensor: 入队队列,即上面得到的img和label,[img, label]
2. batch_size: batch的大小
3. capacity: 队列的最大容量
4. num_threads: 线程数
5. min_after_dequeue: 限制出队时队列中元素的最小个数
"""
img_batch, label_batch = tf.train.shuffle_batch([img, label], batch_size=1,
capacity=24, min_after_dequeue=1) # 将得到的img_batch, label_batch传递给需要进行递归的数据即可

  原文链接:https://blog.csdn.net/cl2227619761/article/details/80107208

越来越清晰的TFRecord处理图片的步骤的更多相关文章

  1. 安装glue,用glue批量处理图片的步骤

     glue批量处理图片:http://glue.readthedocs.io/en/latest/quickstart.html#and-why-those-css-class-names 首先需要安 ...

  2. Nginx安装(我觉得我这篇可能是全网最清晰的一篇安装步骤了)

    原文内容来自于LZ(楼主)的印象笔记,如出现排版异常或图片丢失等问题,可查看当前链接:https://app.yinxiang.com/shard/s17/nl/19391737/46aadb8f-5 ...

  3. 更加清晰的TFRecord格式数据生成及读取

    TFRecords 格式数据文件处理流程 TFRecords 文件包含了 tf.train.Example 协议缓冲区(protocol buffer),协议缓冲区包含了特征 Features.Ten ...

  4. 自动化运维工具Ansible的部署步骤详解

    本文来源于http://sofar.blog.51cto.com/353572/1579894,主要是看到这样一篇好文章,想留下来供各位同僚一起分享. 一.基础介绍 ================= ...

  5. Goodbye2014,Hello2015

    正如我在研发会议上说的,总结是为了更好的计划:而计划,则是让你做事有目标,有方向:有了目标和方向,你才能真正把事情做成! 总的来说2014年可以归纳为下图: 2014年总结 一年的活动,基本可以归纳为 ...

  6. 【原创】机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码

    在上一篇文章:机器学习之PageRank算法应用与C#实现(1)算法介绍 中,对PageRank算法的原理和过程进行了详细的介绍,并通过一个很简单的例子对过程进行了讲解.从上一篇文章可以很快的了解Pa ...

  7. 漫谈可视化Prefuse(六)---改动源码定制边粗细

    可视化一路走来,体会很多:博客一路写来,收获颇丰:代码一路码来,思路越来越清晰.终究还是明白了一句古话:纸上得来终觉浅,绝知此事要躬行. 跌跌撞撞整合了个可视化小tool,零零碎碎结交了众多的志同道合 ...

  8. [python 译] 基于面向对象的分析和设计

    [python 译] 基于面向对象的分析和设计 // */ // ]]>   [python 译] 基于面向对象的分析和设计 Table of Contents 1 原文地址 2 引言 2.1 ...

  9. Zbrush遮罩边界该怎么实现羽化和锐化

    很多情况下为了雕刻制图需要,在ZBrush®中不仅要使用边缘清晰的遮罩,有时还要将遮罩边缘变得模糊,做羽化效果.那么如何在ZBrush中实现羽化遮罩效果或锐化遮罩效果,本文将做详细讲解. 若有疑问可直 ...

随机推荐

  1. Native memory allocation (mmap) failed to map xxx bytes for committing reserved memory

    遇到问题 在服务器上运行 nexus 出现Native memory allocation (mmap) failed to map 838860800 bytes for committing re ...

  2. Python 科学计算库numpy

    Numpy基础数据结构 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的元数 # 多维数组ndarray import numpy as np ar ...

  3. Python--day40线程理论

    1,进程:

  4. 5-1rquests模拟登陆知乎之httpcode

    1,状态码: 400错误:请求无效 (Bad request);出现这个请求无效报错说明请求没有进入到后台服务里 2,requests库:python常用的库,有空仔细阅读一下官方文档

  5. H3C 静态路由实现路由备份和负载分担

  6. H3C DNS简介

  7. vue脚手架搭项目 git push超时github网站打不开

    vue: 1.npm install vue-cli -g 全局安装脚手架 2.vue init webpack  name 新建项目 name为项目名称 react: 1..npm install  ...

  8. js的cookie操作及知识点详解

    <html> <head> <script type="text/javascript"> function getCookie(c_name) ...

  9. Linux 内核完成 urb: 完成回调处理者

    如果对 usb_submit_urb 的调用成功, 传递对 urb 的控制给 USB 核心, 这个函数返回 0; 否则, 一个负错误值被返回. 如果函数成功, urb 的完成处理者(如同被完成函数指针 ...

  10. gulp插件使用

    //引入gulp组件 var gulp=require('gulp'); //创建任务 gulp.task('hello',function(){ console.log('hello'); }); ...