B样条曲线方程和C++实现
功能:根据参数u值和k(大小为阶数值)与节点矢量,计算第i个k次B样条基数
输入参数: u—参数值;k—大小值为阶数;i—第i个k次B样条的支撑区间左端节点的下标;aNode为节点向量。
输出参数:返回函数值。
double GetBaseFunVal(double u, int i, int k, vector <double> m_aNode)
{
double Val = 0.0;
double Val1 = 0.0;
double Val2 = 0.0;
if (k==0)
{
if (u < m_aNode[i] || u > m_aNode[i+1])
return Val;
else
{
Val = 1.0;
return Val;
}
}
if (k>0)
{
if (u < m_aNode[i] || u > m_aNode[i+k+1])
{
return Val;
}
else
{
double alpha = 0.0;
double beta = 0.0;
double dTemp = 0.0;
dTemp = m_aNode[i+k] - m_aNode[i];
if (dTemp == 0.0)
{
alpha = 0;
}
else
alpha = (u - m_aNode[i])/dTemp;
dTemp = m_aNode[i+k+1] - m_aNode[i+1];
if (dTemp == 0.0)
{
beta = 0.0;
}
else
beta = (m_aNode[i+k+1] - u)/dTemp;
Val1 = alpha * GetBaseFunVal(u, i, k-1, m_aNode);
Val2 = beta * GetBaseFunVal(u, i+1, k-1, m_aNode);
Val = Val1 + Val2;
}
}
return Val;
}
上述功能模块摘自于计算机辅助几何设计与非均匀有理B样条。已知B样条的n+1控制点坐标,以及相应的节点向量,可求得对应的曲线方程。
先计算各个控制点的基函数

各个基函数的求解可根据上述的功能模块求出。
下面是我的C++实现:曲线是二维的,三维的情况,就Z坐标做同X,Y求解方式相同即可。在求解的过程中,我自己在CAD上画了个样条曲线,然后通过GetBaseFunVal(double u, int i, int k, vector <double> m_aNode)和顶点坐标,及节点向量求各个点的坐标。随着u值的变化,计算各个X,Y,Z值。一个星期的摸爬滚打中,能输出图形,但是与原来的图形对应不上。最终找到的原因在与基函数出问题了。在书本等相关资源中,基函数成员中的k表示的是次数,在我画的样条曲线中,阶数显示为3(为什么是3?CAD的标注里,实体块中的 70 下一行,为3),所以我理所当然的写为了2,。一直有问题。我将它改为3以后,竟然奇迹般的可以用了。而且跟原来图形吻合。这个是我的相关经历,希望对你们能有用。另外,哪位热心人士可以说明下,为什么k改为阶数大小,就可以呢?
#include <iostream>
#include <fstream>
#include <afxtempl.h>
using namespace std;
struct tPoint
{
double x;
double y;
double z;
};
double GetBaseFunVal(double u, int i, int k, vector <double> m_aNode)
{
double Val = 0.0;
double Val1 = 0.0;
double Val2 = 0.0;
if (k==0)
{
if (u < m_aNode[i] || u > m_aNode[i+1])
return Val;
else
{
Val = 1.0;
return Val;
}
}
if (k>0)
{
if (u < m_aNode[i] || u > m_aNode[i+k+1])
{
return Val;
}
else
{
double alpha = 0.0;
double beta = 0.0;
double dTemp = 0.0;
dTemp = m_aNode[i+k] - m_aNode[i];
if (dTemp == 0.0)
{
alpha = 0;
}
else
alpha = (u - m_aNode[i])/dTemp;
dTemp = m_aNode[i+k+1] - m_aNode[i+1];
if (dTemp == 0.0)
{
beta = 0.0;
}
else
beta = (m_aNode[i+k+1] - u)/dTemp;
Val1 = alpha * GetBaseFunVal(u, i, k-1, m_aNode);
Val2 = beta * GetBaseFunVal(u, i+1, k-1, m_aNode);
Val = Val1 + Val2;
}
}
return Val;
}
int main()
{
tPoint tData;
vector <tPoint> vtData;
vtData.clear();
vector <double> nodeVector;
nodeVector.push_back(0);
nodeVector.push_back(0);
nodeVector.push_back(0);
nodeVector.push_back(0);
nodeVector.push_back(1);
nodeVector.push_back(2);
nodeVector.push_back(3);
nodeVector.push_back(4);
nodeVector.push_back(5);
nodeVector.push_back(6);
nodeVector.push_back(6);
nodeVector.push_back(6);
nodeVector.push_back(6);
//节点向量nodeVector, 控制点坐标(0,3),(200,100), (750, 200), k=2
for (double u = 0; u < 6; u=u+0.01)
{
// 样条的数据
tData.x = (GetBaseFunVal(u, 0, 3, nodeVector)*(-7585) + GetBaseFunVal(u, 1, 3, nodeVector)*(-3427.5) + GetBaseFunVal(u, 2, 3, nodeVector)*46087.5
+ GetBaseFunVal(u, 3, 3, nodeVector)*9220.0 + GetBaseFunVal(u, 4, 3, nodeVector)*(-14835.0) + GetBaseFunVal(u, 5, 3, nodeVector)*(-2002.5) + GetBaseFunVal(u, 6, 3, nodeVector)*71975
+ GetBaseFunVal(u, 7, 3, nodeVector)*45235 + GetBaseFunVal(u, 8, 3, nodeVector)*83150)/*/(GetBaseFunVal(u, 0, 3, nodeVector) + GetBaseFunVal(u, 1, 3, nodeVector) + GetBaseFunVal(u, 2, 3, nodeVector)
+ GetBaseFunVal(u, 3, 3, nodeVector) + GetBaseFunVal(u, 4, 3, nodeVector) + GetBaseFunVal(u, 5, 3, nodeVector))*/;
tData.y = (GetBaseFunVal(u, 0, 3, nodeVector)*(-3807.5) + GetBaseFunVal(u, 1, 3, nodeVector)*(19850.0) + GetBaseFunVal(u, 2, 3, nodeVector)*14335
+ GetBaseFunVal(u, 3, 3, nodeVector)*(-17582.5) + GetBaseFunVal(u, 4, 3, nodeVector)*(-5445.0) + GetBaseFunVal(u, 5, 3, nodeVector)*(-80735.0) + GetBaseFunVal(u, 6, 3, nodeVector)*(-23817.5)
+ GetBaseFunVal(u, 7, 3, nodeVector)*5037.5 + GetBaseFunVal(u, 8, 3, nodeVector)*(-9360))/*/(GetBaseFunVal(u, 0, 3, nodeVector) + GetBaseFunVal(u, 1, 3, nodeVector) + GetBaseFunVal(u, 2, 3, nodeVector)
+ GetBaseFunVal(u, 3, 3, nodeVector) + GetBaseFunVal(u, 4, 3, nodeVector) + GetBaseFunVal(u, 5, 3, nodeVector))*/;
tData.z = 0.0;
vtData.push_back(tData);
}
char *file = "C:/Users/Monkey/Desktop/新建文件夹 (2)/TEST/Last.txt";
ofstream out(file);
if (!out)
{
cout << "打开文件失败!!!!" << endl;
}
for (int n = 0; n < vtData.size(); n++)
{
out << vtData[n].x << " " << vtData[n].y <<" " << vtData[n].z << endl;
}
out.close();
return 0;
}
B样条曲线方程和C++实现的更多相关文章
- B样条曲线曲面(附代码)
1 B样条曲线 1.1 B样条曲线方程 B样条方法具有表示与设计自由型曲线曲面的强大功能,是形状数学描述的主流方法之一,另外B样条方法是目前工业产品几何定义国际标准——有理B样条方法 (NURBS)的 ...
- B样条基函数的定义和性质
定义:令U={u0,u1,…,um}是一个单调不减的实数序列,即ui≤ui+1,i=0,1,…,m-1.其中,ui称为节点,U称为节点矢量,用Ni,p(u)表示第i个p次(p+1阶)B样条基函数,其定 ...
- B样条基函数(cubic spline basis)
B样条基函数用作权重 reference http://blog.csdn.net/tuqu
- [图形学] Chp14 GLU曲面裁剪函数程序示例及样条表示遗留问题
样条表示这章已经看完,最后的GLU曲面裁剪函数,打算按书中的示例实现一下,其中遇到了几个问题. 先介绍一下GLU曲面裁剪函数的使用方法. 1 裁剪函数是成对出现的: gluBeginTrim和gluE ...
- [摘抄] Bezier曲线、B样条和NURBS
Bezier曲线.B样条和NURBS,NURBS是Non-Uniform Rational B-Splines的缩写,都是根据控制点来生成曲线的,那么他们有什么区别了?简单来说,就是: Bezier曲 ...
- B样条基函数的定义及系数的意义
原文链接:http://blog.csdn.net/tuqu/article/details/5177405 贝塞尔基函数用作权重.B-样条基函数也一样:但更复杂.但是它有两条贝塞尔基函数所没有的特性 ...
- 样条之拉格朗日Lagrange(一元全区间)插值函数
这是使用拉格朗日插值函数生成的样条曲线.在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过 ...
- 样条之埃尔米特(Hermite)
埃尔米特(Charles Hermite,1822—1901) 法国数学家.巴黎综合工科学校毕业.曾任法兰西学院.巴黎高等师范学校.巴黎大学教授.法兰西科学院院士.在函数论.高等代数.微分方程等方面都 ...
- 样条之CatmullRom
所谓样条曲线是指给定一组控制点而得到一条曲线,曲线的大致形状由这些点予以控制,一般可分为插值样条和逼近样条两种,插值样条通常用于数字化绘图或动画的设计,逼近样条一般用来构造物体的表面.CatmullR ...
随机推荐
- [校内训练19_09_05]ca
题意 对于任意1 ≤k≤N,求有多少个左右区分的恰有k个叶子节点的二叉树,满足对于每个节点要么没有叶子节点要么有两个节点,同时不存在一个叶子节点,使得根到它的路径上有不少于M条向左的边. 答案对998 ...
- 内网IP的解释
https://baike.baidu.com/item/%E5%86%85%E7%BD%91ip/8881186?fr=aladdin
- nginx白名单黑名单设置
nginx白名单黑名单设置 白名单设置,访问根目录 location / { allow 123.34.22.155; allow 33.56.32.1/100; deny all; } 黑名单设置, ...
- JDK源码之Double类&Float类分析
一 概述 Double 类是基本类型double的包装类,fainl修饰,在对象中包装了一个基本类型double的值.Double继承了Number抽象类,具有了转化为基本double类型的功能. 此 ...
- SVN: 在Ecplise管理SVN资源库
Window->Show View->SVN
- 微服务之docker(二)
一.SpringCloud/SpringBoot整合docker 使用docker的maven组建构建springboot应用(官方文档:https://spring.io/guides/gs/spr ...
- C语言I作业1
1 你对软件工程专业或计算机科学与技术专业了解是怎样的? 软件工程顾名思义就是工程化的方法生产软件的一门学科.涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设计模式等方面. 2 你了解c语 ...
- 办公环境下k8s网络互通方案
在 kubernetes 的网络模型中,基于官方默认的 CNI 网络插件 Flannel,这种 Overlay Network(覆盖网络)可以轻松的实现 pod 间网络的互通.当我们把基于 sprin ...
- 【WPF学习】第四十章 画刷
画刷填充区域,不管是元素的背景色.前景色以及边框,还是形状的内部填充和笔画(Stroke).最简单的画刷类型是SolidColorBrush,这种画刷填充一种固定.连续的颜色.在XAML中设置形状的S ...
- Go语言实现:【剑指offer】把数组排成最小的数
该题目来源于牛客网<剑指offer>专题. 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.例如输入数组{3,32,321},则打印出这三个数字 ...