POJ3241 最小曼哈顿距离生成树 - 真有趣哇
(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦
Catalog
Problem:Portal传送门
原题目描述在最下面。
给你n个坐标,求最小曼哈顿距离生成树。
Solution:
请一定要理解:
有一个剪枝:把坐标分成\(8\)块,在一个\(45\)度区间内,只需要向与之距离最近的点连边。
虽然一共有\(8\)个相对区域,但我们只需考虑\(4\)个,中心对称的不需要再连一次边。这\(4\)个区域坐标转化一下即可求解。
先考虑每个点\(y\)轴向右的\(45\)度区域,例如,对于\(A\)点\((x0,y0)\),\(B(x1,y1)\)在\(A\)点的那部分区域内。有\(x0\leq x1,\; y0-x0\leq y1-x1\)。而\(A\)只要向满足此条件的大于\(y0-x0\)的最小\(x+y\)点连边。
先把所有点按\(x,y\)坐标排序,从最后一个点往前处理(这样保证了\(x1>x0\)的问题),然后用树状数组维护最小的\(x+y\)。
再来思考坐标转化的问题,把[45,90]标记为1,[0,45]标记为2,[-45,0]标记为3,[-90,-45]标记为4.
从区域1到2,3到4只需要交换x,y坐标即可;从区域2到3只需要把x坐标去相反数即可。
AC_Code:
#include<bits/stdc++.h>
#define lson rt<<1
#define rson rt<<1|1
#define all(x) (x).begin(),(x).end()
#define mme(a,b) memset((a),(b),sizeof((a)))
#define fuck(x) cout<<"* "<<x<<"\n"
#define iis std::ios::sync_with_stdio(false)
using namespace std;
typedef long long LL;
typedef pair<int,int> pii;
const int MXN = 1e5 + 7;
const int MXE = 1e6 + 7;
const int INF = 0x3f3f3f3f;
int n, k, tot;
int ar[MXN], fa[MXN];
struct lp{
int x, y, id;
}cw[MXN], edge[MXE];
bool cmp(const lp &a, const lp &b){
if(a.x != b.x)return a.x < b.x;
return a.y < b.y;
}
bool cmp1(const lp &a, const lp &b){
return a.id < b.id;
}
//树状数组部分
struct BIT{
int w, p;
}bit[MXN];
int lowbit(int x){
return x&(-x);
}
void add(int x, int w, int p){
for(; x > 0; x -= lowbit(x)){
if(bit[x].w > w)bit[x].w = w, bit[x].p = p;
}
}
int query(int x){
int mmax = INF, p = -1;
for(; x <= n; x += lowbit(x)){
if(bit[x].w < mmax)mmax = bit[x].w, p = bit[x].p;
}
return p;
}
int Fi(int x){
return fa[x] == x? x: fa[x] = Fi(fa[x]);
}
void add_edge(int u,int v,int w){
edge[++tot].x = u;edge[tot].y = v;edge[tot].id = w;
}
int abd(int x){return (x < 0)? -x : x;}
int dist(int i, int j){
return abs(cw[i].x-cw[j].x)+abs(cw[i].y-cw[j].y);
}
void kruskal(){
sort(edge, edge + tot + 1, cmp1);
int cnt = n - k, ans;
for(int i = 0; i <= n; ++i)fa[i] = i;
for(int i = 0; i <= tot && cnt; ++i){
int pa = Fi(edge[i].x), pb = Fi(edge[i].y);
if(pa == pb)continue;
--cnt;
ans = edge[i].id;
fa[pb] = pa;
}
printf("%d\n", ans);
}
/*
我们只需考虑在一块区域内的点,其他区域内的点可以通过坐标变换“移动”到这个区域内。为了方
便处理,我们考虑在y轴向右45度的区域。在某个点A(x0,y0)的这个区域内的点B(x1,y1)满足
x1≥x0且y1-x1>y0-x0。这里对于边界我们只取一边,但是操作中两边都取也无所谓。那么
|AB|=y1-y0+x1-x0=(x1+y1)-(x0+y0)。在A的区域内距离A最近的点也即满足条件的点中
x+y最小的点。因此我们可以将所有点按x坐标排序,再按y-x离散,用线段树或者树状数组维护
大于当前点的y-x的(最小的x+y)对应的点。时间复杂度O(NlogN)。
*/
int main(int argc, char const *argv[]){
#ifndef ONLINE_JUDGE
freopen("E://ADpan//in.in", "r", stdin);
//freopen("E://ADpan//out.out", "w", stdout);
#endif
while(~scanf("%d%d", &n, &k)){
tot = -1;
for(int i = 0 ; i < n; ++i){
scanf("%d%d", &cw[i].x, &cw[i].y);
cw[i].id = i;
}
for(int dir = 1; dir <= 4; ++dir){
//坐标转换
if(dir % 2 == 0){
for(int i = 0; i < n; ++i)swap(cw[i].x, cw[i].y);
}else if(dir == 3){
for(int i = 0; i < n; ++i)cw[i].x = -cw[i].x;
}
//先x再y排序
sort(cw, cw +n, cmp);
//Discretize
for(int i = 0; i <= n; ++i){
ar[i] = cw[i].y - cw[i].x;
bit[i].w = INF; bit[i].p = -1;
}
sort(ar, ar + n);
int k = unique(ar, ar + n) - ar;
for(int i = n - 1; i >= 0; --i){
//按y-x编号
int p = lower_bound(ar, ar + k, cw[i].y - cw[i].x) - ar + 1;
int pos = query(p);//获取最小的y+x
if(pos != -1){
add_edge(cw[i].id, cw[pos].id, dist(i, pos));
}
//添加y+x
add(p, cw[i].y + cw[i].x, i);
}
}
kruskal();
}
return 0;
}
Problem Description:
POJ3241 最小曼哈顿距离生成树 - 真有趣哇的更多相关文章
- Hdu4311 || 4312Meeting point-1/-2 n个点中任意选一个点使得其余点到该点曼哈顿距离之和最小
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...
- poj3241 曼哈顿最小距离生成树第k大的边
思路: 已知: 要生成曼哈顿距离最小生成树,一个点最多和四周8个点连线,那8个点分别是将那个点四周360度平分成8个区间,每个区间里面和那个点曼哈顿距离最小的点,所以如果有n个点,那么最多有4n条边, ...
- 某个点到其他点的曼哈顿距离之和最小(HDU4311)
Meeting point-1 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- TZOJ 1689 Building A New Barn(求平面上有几个其它点求到n个点的曼哈顿距离最小)
描述 After scrimping and saving for years, Farmer John has decided to build a new barn. He wants the b ...
- HDU 4311 Meeting point-1(曼哈顿距离最小)
http://acm.hdu.edu.cn/showproblem.php?pid=4311 题意:在二维坐标中有n个点,现在要从这n个点中选出一个点,使得其他点到该点的曼哈顿距离总和最小. 思路: ...
- hdu 4311 & 4312 Meeting point 曼哈顿距离之和最小
hdu 4311 题意 平面上\(n(n\leq 1e5)\)个点,找一个点到其它所有点的曼哈顿距离之和最小. 思路 如果是找一个坐标使得所有点到其曼哈顿距离之和最小,那么将\(n\)个横坐标排个序, ...
- 15 Puzzle (4乘4谜题) IDA*(DFS策略与曼哈顿距离启发) 的C语言实现
大家好!这是我的第一篇博客,由于之前没有撰写博客的经验,并且也是初入计算机和人工智能领域,可能有些表述或者理解不当,还请大家多多指教. 一.撰写目的 由于这个学期在上算法与数据结构课程的时候,其中一个 ...
- 曼哈顿距离MST
https://www.cnblogs.com/xzxl/p/7237246.html 讲的不错 /* 曼哈顿距离最小生成树 poj 3241 Object Clustering 按照上面的假设我们先 ...
- Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离
Atitti knn实现的具体四个距离算法 欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...
随机推荐
- final关键字和static关键字
final关键字:最终态--修饰成员变量,成员方法,类 final修饰变量: 基本类型变量:该变量为常量不能被赋值 引用类型变量:该地址不能被概变 地址不能被概变的原因: final Student ...
- Python爬虫实战—— Request对象之header伪装策略
在header当中,我们经常会添加两个参数--cookie 和 User-Agent,来模拟浏览器登录,以此提高绕过后台服务器反爬策略的可能性. User-Agent获取 User-Agent可通过随 ...
- php编译安装增加pdo扩展
首先查看mysql版本和位置 mysql --version whereis mysql 去php安装目录安装扩展 cd /usr/local/src/php-5.4.25/ext/pdo_mysql ...
- visual_c++外挂教程(详细)
课程分四个大章节 初级篇,中级篇,进阶篇,高级篇 初级篇内容:编写一个完整的,简单的外挂 C++的数据类型:Byte,Word,DWORD,int,float API函数的调mouse_event,G ...
- Openfire调整成自己的IM部署到LInux系统上
部署自己的IM到Linux系统下:需要生成相关jar包再部署 1.在myeclipse上把openfire源代码加在加载进来,做相应调整后,运行测试没问题 2. 编译admin-jsp.jar(所有 ...
- Mac 安装react-native 环境踩坑记
我的工程创建时间是2019.7.11号下午 :首先看一下最后我的工程的package.json各个包的版本: { "name": "MyApp", &quo ...
- python sort 和sorted排序
当我们从数据库中获取一写数据后,一般对于列表的排序是经常会遇到的问题,今天总结一下python对于列表list排序的常用方法: 第一种:内建方法sort() 可以直接对列表进行排序 用法: list. ...
- Openstack组件部署 — Nova_安装和配置Controller Node
目录 目录 前文列表 Prerequisites 先决条件 To create the databases To create the service credentials Create the C ...
- Redis和SpringBoot整合RedisUtils类
一.引入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- MySQL数据库(五)—— 用户管理、pymysql模块
用户权限管理.pymysql模块 一.用户管理(权限管理) 在MySQL中自带的mysql数据库中有4个表用于用户管理的 # 优先级从高到低 user > db > tables_priv ...