题面

一道很经典的最短路模型转换问题。

考虑如何建图。

我们可以发现,对于每一条公交线路,可以将这条线路上 可以到达的两个点 连一条权值为 \(1\) 的边。

获取一条公交线路上的每一个点可以使用读取每一个字符的方式,注意要先读取第一行的换行符。

然后就是普通的 BFS 求图的最短路问题了。

最后注意特判输出 NO 和 \(0\) 的情况。

#include <bits/stdc++.h>

using namespace std;

const int N = 503;

int n, m;
int a[N], tot; //存储每一条公交线路
bool g[N][N]; //存图的邻接矩阵
int dist[N]; //1 号点到每个点的距离
int q[N], hh, tt; //BFS 的队列 inline void bfs() //BFS 求最短路
{
hh = tt = 0;
q[0] = 1;
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
while (hh <= tt)
{
int u = q[hh++];
for (int i = 1; i <= n; i+=1)
if (g[u][i] && dist[i] > dist[u] + 1)
{
dist[i] = dist[u] + 1;
q[++tt] = i;
}
}
} int main()
{
cin >> m >> n;
string h;
getline(cin, h); //注意要先读取换行符
for (int i = 1; i <= m; i+=1)
{
getline(cin, h);
int len = h.size();
tot = 0;
for (int j = 0; j < len; j+=1)
{
int now = 0;
while (h[j] >= '0' && h[j] <= '9')
now = now * 10 + h[j] - '0', ++j;
a[++tot] = now; //获取每一个站点
}
for (int j = 1; j < tot; j+=1)
for (int k = j + 1; k <= tot; k+=1)
g[a[j]][a[k]] = true; //建图
}
bfs(); //求最短路
if (dist[n] == 0x3f3f3f3f) puts("NO"); //无解
else cout << max(0, dist[n] - 1) << endl; //注意要与 0 取 max
return 0;
}

题解【洛谷P5767】[NOI1997]最优乘车的更多相关文章

  1. 【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)

    次元传送门:洛谷P1073 思路 一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下 因为每个城市可以走好几次 所以说我们可以在图上 ...

  2. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  3. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  4. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  5. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  6. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  7. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  8. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  9. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  10. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

随机推荐

  1. Python LEGB (Local, Enclosing, Global, Build in) 规则

    Local 一个函数定义了一个 local 作用域; PyFrameObject 中的 f_local 属性 Global 一个 module 定义了一个 global 作用域; PyFrameObj ...

  2. JavaScript实现计算后缀表达式(逆波兰表达式)以及将中缀表达式转为后缀表达式

    逆波兰表达式,它的语法规定,表达式必须以逆波兰表达式的方式给出.逆波兰表达式又叫做后缀表达式.这个知识点在数据结构和编译原理这两门课程中都有介绍,下面是一些例子: 正常的表达式 逆波兰表达式 a+b ...

  3. python图片处理PIL

    一.PIL介绍 PIL中所涉及的基本概念有如下几个:通道(bands).模式(mode).尺寸(size).坐标系统(coordinate system).调色板(palette).信息(info)和 ...

  4. Vue.js 计算属性computed和methods的区别

    在vue.js中,有methods和computed两种方式来动态当作方法来用的 如下: 两种方式在这种情况下的结果是一样的 写法上的区别是computed计算属性的方式在用属性时不用加(),而met ...

  5. 现在连Linux都搞不懂,当初我要是这么学习操作系统就好了!

    原创声明 本文首发于微信公众号[程序员黄小斜] 本文作者:黄小斜 转载请务必在文章开头注明出处和作者. 本文思维导图 简介 学习编程,操作系统是你必须要掌握的基础知识,那么操作系统到底是什么呢? 这还 ...

  6. 解决React路由URL中hash(#)部分的显示 、browserHistory打包后浏览器刷新页面出现404的问题

    摘要 在React项目中,我们需要采用它的路由库React-Router来进行页面跳转,React会根据路由URL来判断是哪个页面.常见的的URL有两种显示方式,一种是hashHistory的形式,形 ...

  7. 《ADCrowdNet》密集人群检测论文笔记

    背景 为了解决高密度的计数问题.(PS:就是attention机制的应用) 网络 整体网络结构图 attention部分的网络AMG 密度图预测网络 DConv代表可变形卷积,下图是常规卷积(左)与可 ...

  8. Html介绍,认识html文件基本结构

    一个HTML文件的基本机构如下: <html><head>...</head><body>...</body></html>代码 ...

  9. 吴裕雄--天生自然 R语言数据可视化绘图(3)

    par(ask=TRUE) opar <- par(no.readonly=TRUE) # record current settings # Listing 11.1 - A scatter ...

  10. EasyUI笔记(四)菜单和按钮

    本系列只列出一些常用的属性.事件或方法,具体完整知识请查看API文档 Menu(菜单) 菜单组件通常用于快捷菜单.他是构建其他菜单组件的必备基础组件.比如:menubutton和splitbutton ...