题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831


考虑$-1$的位置上填写的数字一定是不降的。

令${f[i][j]}$表示$DP$到了第$i$位,最后一个$-1$上填的数字是$j$的最少逆序对数量。

如果当前位置是$-1$:

${f[i][j]=min\left \{ f[i-1][x] |x\leq j \right \}+ma[i][j+1]+mi[i][j-1]}$

如果当前位是确定的数字。
${f[i][j]=f[i-1][j]+ma[i][j+1]}$

其中${ma[i][j]}$表示在给定数组第$i$位之前的数字中大于等于$j$的数字的数量,${mi[i][j]}$表示在给定数组第$i$位之后的数字中小于等于$j$的数字的数量。

${ma,mi}$数组用树状数组维护一下即可。


 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 10010
#define llg long long
#define yyj(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
llg n,m,f[maxn][],val[maxn],V[maxn];
llg c[maxn]; llg lowbit(llg x){return x&-x;} void add(llg x,llg v){for (;x<=m;x+=lowbit(x)) val[x]+=v;} llg sum(llg x){llg tot=; for (;x>;x-=lowbit(x)) tot+=val[x]; return tot;} void add_(llg x,llg v){for (;x<=m;x+=lowbit(x)) V[x]+=v;} llg sum_(llg x){llg tot=; for (;x>;x-=lowbit(x)) tot+=V[x]; return tot;} int main()
{
yyj("bzoj1831");
cin>>n>>m;
for (llg i=;i<=n;i++)
for (llg j=;j<=m;j++)
f[i][j]=0x7fffffff;
for (llg i=;i<=n;i++)
{
scanf("%lld",&c[i]);
if (c[i]!=-) add_(c[i],);
}
f[][]=;
for (llg i=;i<=n;i++)
{
if (c[i]!=-)
{
for (llg j=;j<=m;j++) f[i][j]=f[i-][j]+sum(m)-sum(c[i]);
add_(c[i],-);
add(c[i],);
}
else
{
llg mi=f[i-][];
for (llg j=;j<=m;j++)
{
mi=min(f[i-][j],mi);
f[i][j]=mi+sum(m)-sum(j)+sum_(j-);
}
}
}
llg ans=0x7fffffff;
for (llg i=;i<=m;i++) ans=min(ans,f[n][i]);
cout<<ans;
return ;
}

【BZOJ】1831: [AHOI2008]逆序对的更多相关文章

  1. BZOJ 1831: [AHOI2008]逆序对

    题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...

  2. BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对

    这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...

  3. bzoj1786: [Ahoi2008]Pair 配对&&1831: [AHOI2008]逆序对

    一个自以为很对的东西,我们往-1放的数肯定是不增的. 然后就预处理一下,假如i这个位置放j会多多少逆序对. DP一下,我的复杂度应该是O(n*m^2)的,然而你随便搞都能省掉一个m吧,我算了算好像可以 ...

  4. BZOJ1831: [AHOI2008]逆序对

    1831: [AHOI2008]逆序对 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 341  Solved: 226[Submit][Status] ...

  5. bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)

    1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...

  6. 【BZOJ1831】[AHOI2008]逆序对(动态规划)

    [BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\) ...

  7. BZOJ 3295 动态逆序对 | CDQ分治

    BZOJ 3295 动态逆序对 这道题和三维偏序很类似.某个元素加入后产生的贡献 = time更小.pos更小.val更大的元素个数 + time更小.pos更大.val更小的元素个数. 分别用类似C ...

  8. 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)

    题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...

  9. bzoj 3295 动态逆序对 CDQ分支

    容易看出ans[i]=ans[i-1]-q[i],q[i]为删去第i个数减少的逆序对. 先用树状数组算出最开始的逆序对,预处理出每个数前边比它大的和后边比它小的,就求出了q[i]的初始值. 设b[i] ...

随机推荐

  1. jQuery实现无刷新切换主题皮肤功能

    主题皮肤切换功能在很多网站和系统中应用,用户可以根据此功能设置自己喜欢的主题颜色风格,增强了用户体验.本文将围绕如何使用jQuery实现点击无刷新切换主题皮肤功能. 查看演示DEMO:https:// ...

  2. 可视化的fineBI很高大上 使用简单,简单操作了一下,拖一拖就行,收费 只能看一下人家的demo 网站 http://demo.finebi.com/webroot/decision#directory

  3. 爬虫--cheerio

    const cheerio = require('cheerio') const $ = cheerio.load('<h2 class="title">Hello w ...

  4. 前端框架VUE----补充

    修饰符 .lazy 在默认情况下,v-model 在每次 input 事件触发后将输入框的值与数据进行同步 .你可以添加 lazy 修饰符,从而转变为使用 change 事件进行同步: <!-- ...

  5. Nginx rewrite(重写)

    Nginx Rewrite规则相关指令  Nginx Rewrite规则相关指令有if.rewrite.set.return.break等,其中rewrite是最关键的指令.一个简单的Nginx Re ...

  6. 原生tab选项卡制作

    html部分 <div class="tab"> <div class="nav"> <ul> <li class=& ...

  7. GoldenGate 12.2抽取Oracle 12c多租户配置过程

    linux下安装12c 重启linux之后,dbca PDB/CDB使用 SQL> select instance_name from v$instance; INSTANCE_NAME --- ...

  8. Android几种解析XML方式的比较

    https://blog.csdn.net/isee361820238/article/details/52371342 一.使用SAX解析XML SAX(Simple API for XML) 使用 ...

  9. ES6知识整理(3)--函数的扩展

    只有整理过的学习才是有效的学习.也就是学习之后要使用和整理成文,才是真正的学到了... 最近上班有点忙的关系,于是文章更新会慢些.只有晚上加完班之后,空余时间才能学习整理.因此完成一篇也可能要几个晚上 ...

  10. SVN如何将版本库url访问地址中的https改为http

    1.选择控制台树中的根节点,右键选择“属性”. 2.切换至面板“网络”. 3.取消勾选项“使用安全连接协议(https://)”.