传送门

这种题显然要用树上莫队

何为树上莫队?就是在树上跑莫队算法就是先把树分块,然后把询问离线,按照左端点所在块为第一关键字,右端点所在块为第二关键字,时间戳(如果有修改操作)为第三关键字排序,然后依次处理.树上莫队要每个点记录是否访问,移动端点时需要把移动前和移动后的点之间的路径上的点(除了上述两点的lca)的访问状态取反,算答案时单独对询问两端点的lca算贡献

然后用莫队的那一套理论直接做就好了

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register using namespace std;
const int N=100000+10;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int to[N<<1],nt[N<<1],hd[N],tot=1;
il void add(int x,int y)
{
++tot,to[tot]=y,nt[tot]=hd[x],hd[x]=tot;
++tot,to[tot]=x,nt[tot]=hd[y],hd[y]=tot;
}
int n,m,q,szm,mm[N],nm,a[N],b[N],ti,mdf[N][3];
int fa[N],de[N],sz[N],son[N],top[N];
LL v[N],w[N],na,an[N];
int st[N],tp;
void dfs1(int x)
{
sz[x]=1;
int la=tp;
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y==fa[x]) continue;
fa[y]=x,de[y]=de[x]+1,dfs1(y),sz[x]+=sz[y];
if(sz[son[x]]<sz[y]) son[x]=y;
if(tp-la>=szm)
{
++nm;
while(tp!=la) mm[st[tp--]]=nm;
}
}
st[++tp]=x;
}
void dfs2(int x,int ntp)
{
top[x]=ntp;
if(son[x]) dfs2(son[x],ntp);
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y==fa[x]||y==son[x]) continue;
dfs2(y,y);
}
}
il int glca(int x,int y)
{
while(top[x]!=top[y])
{
if(de[top[x]]<de[top[y]]) swap(x,y);
x=fa[top[x]];
}
return de[x]<de[y]?x:y;
}
bool vis[N];
il void ad(int ww){++b[ww],na+=v[ww]*w[b[ww]];}
il void dl(int ww){na-=v[ww]*w[b[ww]],--b[ww];}
il void cg(int x)
{
if(vis[x]) dl(a[x]);
else ad(a[x]);
vis[x]^=1;
}
il void mv(int x,int y)
{
if(de[x]<de[y]) swap(x,y);
while(de[x]!=de[y]) cg(x),x=fa[x];
while(x!=y) cg(x),x=fa[x],cg(y),y=fa[y];
}
struct qu
{
int l,r,t,id;
bool operator < (const qu &bb) const {return mm[l]!=mm[bb.l]?mm[l]<mm[bb.l]:(mm[r]!=mm[bb.r]?mm[r]<mm[bb.r]:t<bb.t);}
}qq[N]; int main()
{
n=rd(),m=rd(),q=rd();
szm=(int)pow(n,0.61);
for(int i=1;i<=m;++i) v[i]=rd();
for(int i=1;i<=n;++i) w[i]=rd();
for(int i=1;i<n;++i) add(rd(),rd());
dfs1(1);
while(tp) mm[st[tp--]]=nm;
dfs2(1,1);
for(int i=1;i<=n;++i) a[i]=rd();
for(int i=1;i<=q;++i)
{
int op=rd(),x=rd(),y=rd();
if(op==1)
{
if(mm[x]>mm[y]) swap(x,y);
qq[i-ti].l=x,qq[i-ti].r=y,qq[i-ti].t=ti,qq[i-ti].id=i-ti;
}
else mdf[++ti][0]=x,mdf[ti][1]=y;
}
sort(qq+1,qq+q-ti+1);
for(int i=1,l=1,r=1,t=0;i<=q-ti;l=qq[i].l,r=qq[i].r,++i)
{
while(t<qq[i].t)
{
++t;
int xx=mdf[t][0],yy=mdf[t][1];mdf[t][2]=a[xx];
if(vis[xx]) dl(a[xx]),ad(yy);
a[xx]=yy;
}
while(t>qq[i].t)
{
int xx=mdf[t][0],yy=mdf[t][2];
if(vis[xx]) dl(a[xx]),ad(yy);
a[xx]=yy;
--t;
}
mv(l,qq[i].l),mv(r,qq[i].r);
int lca=glca(qq[i].l,qq[i].r);
cg(lca),an[qq[i].id]=na,cg(lca);
}
for(int i=1;i<=q-ti;++i) printf("%lld\n",an[i]);
return 0;
}

luogu P4074 [WC2013]糖果公园的更多相关文章

  1. BZOJ 3052/Luogu P4074 [wc2013]糖果公园 (树上带修莫队)

    题面 中文题面,难得解释了 BZOJ传送门 Luogu传送门 分析 树上带修莫队板子题... 开始没给分块大小赋初值T了好一会... CODE #include <bits/stdc++.h&g ...

  2. LUOGU P4074 [WC2013]糖果公园 (树上带修莫队)

    传送门 解题思路 树上带修莫队,搞了两天..终于开O2+卡常大法贴边过了...bzoj上跑了183s..其实就是把树上莫队和带修莫队结合到一起,首先求出括号序,就是进一次出一次那种的,然后如果求两个点 ...

  3. 洛谷 P4074 [WC2013]糖果公园 解题报告

    P4074 [WC2013]糖果公园 糖果公园 树上待修莫队 注意一个思想,dfn序处理链的方法,必须可以根据类似异或的东西,然后根据lca分两种情况讨论 注意细节 Code: #include &l ...

  4. P4074 [WC2013]糖果公园 树上莫队带修改

    题目链接 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩. 糖果公园的结构十分奇特,它由 nn 个游览点构 ...

  5. Machine Learning Codeforces - 940F(带修莫队) && 洛谷P4074 [WC2013]糖果公园

    以下内容未验证,有错请指正... 设块大小为T,则块数为$\frac{n}{T}$ 将询问分为$(\frac{n}{T})^2$块(按照左端点所在块和右端点所在块分块),同块内按时间从小到大依次处理 ...

  6. 洛谷P4074 [WC2013]糖果公园(莫队)

    传送门 总算会树形莫队了…… 上次听说树形莫队是给树分块,实在看不懂.然后用括号序列的方法做总算能弄明白了 先说一下什么是括号序列,就是在$dfs$的时候,进入的时候记录一下,出去的时候也记录一下 拿 ...

  7. [洛谷P4074][WC2013]糖果公园

    题目大意:给一棵$n$个节点的树,每个点有一个值$C_i$,每次询问一条路径$x->y$,求$\sum\limits_{c}val_c\times \sum\limits_{i=1}^{cnt_ ...

  8. P4074 [WC2013]糖果公园

    思路 带修莫队+树上莫队 注意代码细节即可,答案的维护非常简单 蒟蒻的大常数代码 #include <cstdio> #include <algorithm> #include ...

  9. bzoj 3052: [wc2013]糖果公园 带修改莫队

    3052: [wc2013]糖果公园 Time Limit: 250 Sec  Memory Limit: 512 MBSubmit: 506  Solved: 189[Submit][Status] ...

随机推荐

  1. jmeter简单录制脚本

    1 创建HTTP请求默认值. --添加线程组:右击"测试计划"→添加→Threads(Users)→线程组,建议重命名线程组增强可读性. --添加HTTH请求默认值:右击" ...

  2. day29 类中的内置函数方法 __str__ __repr__ __call__ isinstance() issubclass()

    __str__()__repr__()__len__() str() 转字符串repr() 让字符原形毕露的方法len() 计算长度 内置的方法很多,但是并不是全部都在object中,比如len(), ...

  3. MT【212】合作共赢

    一次会议有1990位数学家参加,每人至少有过1327位合作者,求证:可以找到4位数学家,他们中每一个都合作过. 解答:记与$v_i$合作过的数学家构成集合$A_i(i=1,2,\cdots,1990) ...

  4. poj1236/luogu2746 Network of Schools (tarjan)

    tarjan缩点后,第一问答案显然是入度为零的点得个数第二问:考虑到 没有入度或出度为0的点 的图强连通, 所以答案就是max{入度为零的个数,出度为零的个数} (把出度为零的连到入度为零的点,然后剩 ...

  5. 深入理解Adaboost算法

    理解算法确实是欲速则不达,唯有一步一步慢慢看懂,然后突然觉得写的真的太好了,那才是真的有所理解了. Adaboost的两点关键点: 1. 如何根据弱模型的表现更新训练集的权重: 2. 如何根据弱模型的 ...

  6. JDK源码分析(5)Vector

    JDK版本 Vector简介 /** * The {@code Vector} class implements a growable array of * objects. Like an arra ...

  7. UVALive - 6436(DFS)

    题目链接:https://vjudge.net/contest/241341#problem/C 题目大意:给你从1到n总共n个数字,同时给你n-1个连接,同时保证任意两个点之间都可以连接.现在假设任 ...

  8. checkBox全选全不选及数据提交后台

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  9. 织梦DedeCMS信息发布员发布文章阅读权限不用审核自动开放亲测试通过!

    文章发布员在织梦dedecms后台添加文章时却要超级管理员审核,这无疑是增加了没必要的工作. 登录该账号发布文章你会发现该文章显示的是待审核稿件,且并没有生成静态文件,在前台是看不到这篇文章的,而多数 ...

  10. gb2312提交的url编码转换成utf8的查询

    使用场景,当一网站是gb2312的编码向另一个是utf8的网站提交查询 如:http://search.chinayq.com/?key=%C0%D6%C6%F7 其中key为gb2312的url编码 ...