Strobogrammatic Number I

A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).

Write a function to determine if a number is strobogrammatic. The number is represented as a string.

For example, the numbers "69", "88", and "818" are all strobogrammatic.

From:https://segmentfault.com/a/1190000003787462

翻转后对称的数就那么几个,我们可以根据这个建立一个映射关系:8->8, 0->0, 1->1, 6->9, 9->6,然后从两边向中间检查对应位置的两个字母是否有映射关系就行了。比如619,先判断6和9是有映射的,然后1和自己又是映射,所以是对称数。

 public class Solution {
public boolean isStrobogrammatic(String num) {
for (int i = ; i <= num.length() / ; i++) {
char a = num.charAt(i);
char b = num.charAt(num.length() - - i);
if (!isValid(a, b)) {
return false;
}
}
return true;
}
private boolean isValid(char c, char b) {
switch (c) {
case '':
return b == '';
case '':
return b == '';
case '':
return b == '';
case '':
return b == '';
case '':
return b == '';
default:
return false;
}
}
}

Strobogrammatic Number II

From: http://www.cnblogs.com/grandyang/p/5200919.html

A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).

Find all strobogrammatic numbers that are of length = n.

For example, Given n = 2, return ["11","69","88","96"].

这道题是之前那道Strobogrammatic Number的拓展,那道题让我们判断一个数是否是对称数,而这道题让我们找出长度为n的所有的对称数,我们肯定不能一个数一个数的来判断,那样太不高效了,而且OJ肯定也不会答应。题目中给了提示说可以用递归来做,而且提示了递归调用n-2,而不是n-1。我们先来列举一下n为0,1,2,3,4的情况:

n = 0:   none

n = 1:   0, 1, 8

n = 2:   11, 69, 88, 96

n = 3:   101, 609, 808, 906, 111, 619, 818, 916, 181, 689, 888, 986

n = 4:   1001, 6009, 8008, 9006, 1111, 6119, 8118, 9116, 1691, 6699, 8698, 9696, 1881, 6889, 8888, 9886, 1961, 6969, 8968, 9966

我们注意观察n=0和n=2,可以发现后者是在前者的基础上,每个数字的左右增加了[1 1], [6 9], [8 8], [9 6],看n=1和n=3更加明显,在0的左右增加[1 1],变成了101, 在0的左右增加[6 9],变成了609, 在0的左右增加[8 8],变成了808, 在0的左右增加[9 6],变成了906, 然后在分别在1和8的左右两边加那四组数,我们实际上是从m=0层开始,一层一层往上加的,需要注意的是当加到了n层的时候,左右两边不能加[0 0],因为0不能出现在两位数及多位数的开头,在中间递归的过程中,需要有在数字左右两边各加上0的那种情况,参见代码如下:

 class Solution {
public:
vector<string> findStrobogrammatic(int n) {
return find(n, n);
}
vector<string> find(int m, int n) {
if (m == ) return {""};
if (m == ) return {"", "", ""};
vector<string> t = find(m - , n), res;
for (auto a : t) {
if (m != n) res.push_back("" + a + "");
res.push_back("" + a + "");
res.push_back("" + a + "");
res.push_back("" + a + "");
res.push_back("" + a + "");
}
return res;
}
};

Strobogrammatic Number的更多相关文章

  1. [LeetCode] Strobogrammatic Number III 对称数之三

    A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside ...

  2. [LeetCode] Strobogrammatic Number II 对称数之二

    A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside ...

  3. [LeetCode] Strobogrammatic Number 对称数

    A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside ...

  4. LeetCode Strobogrammatic Number II

    原题链接在这里:https://leetcode.com/problems/strobogrammatic-number-ii/ 题目: A strobogrammatic number is a n ...

  5. LeetCode Strobogrammatic Number

    原题链接在这里:https://leetcode.com/problems/strobogrammatic-number/ 题目: A strobogrammatic number is a numb ...

  6. Leetcode: Strobogrammatic Number III

    A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside ...

  7. 248. Strobogrammatic Number III

    题目: A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at ups ...

  8. 247. Strobogrammatic Number II

    题目: A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at ups ...

  9. 246. Strobogrammatic Number

    题目: A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at ups ...

随机推荐

  1. Docker学习笔记 — 配置国内免费registry mirror

    Docker学习笔记 — 配置国内免费registry mirror Docker学习笔记 — 配置国内免费registry mirror

  2. 为你的Visual Studio单独设置代理服务器

    http://blog.sina.com.cn/s/blog_58c506600101tycn.html 最近,因为国内访问Visual Studio Online(微软的免费代码托管服务,以前叫Te ...

  3. SQL JOINS

  4. .NET对象判等归纳与总结

    1.引言 最近在看<CLR via C#>看到对象判等的那一节,觉得这也是.NET基础知识中比较重要的部分就写一篇博文来简单的总结归纳一下. 2..NET下的对象判等 在.NET中关于对象 ...

  5. 新浪微博客户端(59)-hitTest withEvent方法的使用说明

    iOS中的触摸事件总是由最顶层的View首先得到的,当这个View得到该触摸事件的时候可以选择通过 - (BOOL)pointInside:(CGPoint)point withEvent:(UIEv ...

  6. Tomcat 6.0 简介

    本片翻译来自:http://tomcat.apache.org/tomcat-6.0-doc/introduction.html 介绍 无论是开发者还是tomcat管理员在使用前都需要了解一些必要的信 ...

  7. box-sizing属性

    我们都知道,设置元素的padding或者margin属性时都会改变元素的width和height,传统的方法是将padding和margin的值考虑进去,运用数学的方法进行计算来加以调整,以便使布局不 ...

  8. jQuery的$.ajax示例

    $.ajax({ url: 'index.php?module=products&submod=product_experience_manage&method=ajaxGetSele ...

  9. 关于Dijkstra最短路径算法

    Dijkstra算法,不是很明白,今天找了一些博客看了一下,决定自己也写一个为以后忘记的时候可以看做准备. 实际上,如果理解没错的话,该算法实际上和枚举法有点像,只不过,在选取出发路径的路径都是最短路 ...

  10. BeanFactory和ApplicationContext的区别

     1.BeanFactory和ApplicationContext的异同点: 相同点:     两者都是通过xml配置文件加载bean,ApplicationContext和BeanFacotry相比 ...