【bzoj3884】 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 (题目链接)
题意
求
Solution
解决的关键:
当${n>φ(p)}$,有$${a^n≡a^{n\%φ(p)+φ(p)}~(mod~p)}$$
然后递归log(p)次就会出解:http://blog.csdn.net/skywalkert/article/details/43955611
细节
代码
// bzoj3884
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=10000010;
int phi[maxn],vis[maxn],p[maxn]; void calphi() {
phi[1]=1;
for (int i=2;i<maxn;i++) {
if (!vis[i]) {p[++p[0]]=i;phi[i]=i-1;}
for (int j=1;j<=p[0];j++) {
if (p[j]*i>maxn) break;
vis[p[j]*i]=1;
if (i%p[j]==0) {phi[p[j]*i]=phi[i]*p[j];break;}
else phi[p[j]*i]=phi[p[j]]*phi[i];
}
}
}
int power(int a,int b,int c) {
int res=1;
while (b) {
if (b&1) res=(LL)res*a%c;
b>>=1;a=(LL)a*a%c;
}
return res;
}
int solve(int p) {
if (p==1) return 0;
int res=solve(phi[p])+phi[p];
return power(2,res,p);
}
int main() {
calphi();
int T,P;scanf("%d",&T);
while (T--) {
scanf("%d",&P);
printf("%d\n",solve(P));
}
return 0;
}
【bzoj3884】 上帝与集合的正确用法的更多相关文章
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
随机推荐
- BZOJ 1588: [HNOI2002]营业额统计
1588: [HNOI2002]营业额统计 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 14396 Solved: 5521[Submit][Sta ...
- Java 集合系列12之 TreeMap详细介绍(源码解析)和使用示例
概要 这一章,我们对TreeMap进行学习.我们先对TreeMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用TreeMap.内容包括:第1部分 TreeMap介绍第2部分 TreeMa ...
- AR 不同 继承映射的问题总结
在使用AR(Nhibernate) 做ORM时,使用类的继承体系时,它有不同的映射方式,解决的问题不同,带来的问题差异也很大. 1.所有数据 存储在一张表,不同的类使用 DiscriminatorCo ...
- C# 如何定义让PropertyGrid控件显示[...]按钮,并且点击后以下拉框形式显示自定义控件编辑属性值
关于PropertyGrid控件的详细用法请参考文献: 1.C# PropertyGrid控件应用心得 2.C#自定义PropertyGrid属性 首先定义一个要在下拉框显示的控件: using Sy ...
- CoffeeScript的类继承的工具函数extends
__hasProp = {}.hasOwnProperty, __extends = function(child, parent) { // 派生类时,如果基类的类属性值是对象,那么子类的类属性只是 ...
- oracle:db-link使用
二个oracle instance,如果需要在一个instance上,直接查询另一个instance上的数据,就要用到db-link 创建: create public database link 链 ...
- Java应用程序项目的打包与发行(run.bat形式)
参考: http://www.iteye.com/topic/57312 背景: 以前一直都是在eclipse上面创建应用程序,每次要要运行的时候都要打开eclipse, 直到有个同事叫我帮忙写一个应 ...
- CSS实现透明边框
border: 8px solid rgba(255,255,255,0.2);
- ASP.NET MVC3入门教程之环境搭建
本文转载自:http://www.youarebug.com/forum.php?mod=viewthread&tid=90&extra=page%3D1 什么是ASP.NET MVC ...
- 在线程中调用SaveFileDialog
在多线程编程中,有时候可能需要在单独线程中执行某些操作.例如,调用SaveFileDialog类保存文件.首先,我们在Main方法中创建了一个新线程,并将其指向要执行的委托SaveFileAsyn.在 ...