http://www.lydsy.com/JudgeOnline/problem.php?id=2286 (题目链接)

一个小小的细节,WA了一天,欲哭无泪了。。

题意

  给出一个n个节点的带权树,总共m次询问,每次询问给出K个节点标号,求出切断这些节点与1号节点的路径的最少花费。

solution

  构造虚数+树形dp。

  首先,有关虚树的题有一个特征,就是题目会给出sigema(k[i])的范围,保证不会太大。所以我们考虑对于每一次询问构造一棵虚树,然后再在虚树上跑dp,可以大大减少复杂度,比如u,v两点之间没有其他询问点,那么我们就可以把uv直接连起来,中间的点是什么我们并不关心。我们只要建出这样一棵树即可:只含当前询问点和它们的lca,并且相对位置关系不变。 
举个例子,比如说选1,5,8,10号节点。 

  那么构造出来的的虚树就是: 

  那么如何构造虚树呢?

  我们先对原树dfs一遍,预处理出dfs序(mark[]),将询问点按照dfs序排序,依次插入一个栈,来动态维护一个叫做“最右链”的东西,就是最右边的一条链……这个也不太好说明,最好自己看着代码模拟一遍……

  用虚树还要满足一个条件,就是要维护的信息。例如,和,最大,最小,都有类似于前缀和的性质。就是我们可以从v(u的后代)直接求出u的答案,而不需要遍历u到v的所有边,否则虚树就没有降低复杂度,因为每次还是要在原树上走。在这道题中,我们用一个数组mn[i]来维护节点i到根节点1的路径上的花费最小的那一条边权,mn[i]我们可以在dfs时预处理出。这有什么用呢,看下面。

  关于如何在虚树上dp,我么有了mn[]数组后,就变的很简单,f[i]表示断开询问点i以及i的子树上的询问点到根节点1的路径的最小花费。转移方程:f[i]=min(mn[i],sigema(f[e[i].to]),其中e[i].to指的是i节点的孩子节点。

  可是我们考虑一种情况,借用上面的图1,若询问点是2和8,mn[8]=4->8=1,mn[2]=1->2=4,按照我们的算法,那么得出的答案就会是1,而这样是不正确的。

  也就是说,当存在询问点u,v设deep[u]<deep[v]使lca(u,v)==u时,我们的dp方程是不成立的。对于这种情况,选择切断深度浅的点的mn[u]是最优的。想一想,若切断了mn[u],那么在i的子树上的询问点v自然也被切断了。

  所以我们在构建虚树的时候,就预先将这种情况处理掉,也就是在u,v中只选择u放入虚树中。所以虚树中只有叶子节点是询问点。

细节

  题目数据范围有误→_→。最后输出的答案可能会很大,记得开LL。inf要开到很大,2147483647是远远不够的(博主就这样WA了一天= =)。还有邻接表头head[]不能直接memset。

代码

// bzoj2286
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf (1ll<<60)
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=300010;
int a[maxn],deep[maxn],head[maxn],dfn[maxn],fa[maxn][30],bin[30],s[maxn];
int n,cnt,Q,K;
LL f[maxn],mn[maxn];
struct edge {int to,next;LL w;}e[maxn<<1]; bool cmp(int a,int b) {
return dfn[a]<dfn[b];
}
void link(int u,int v,LL w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],w};head[v]=cnt;
}
void link(int u,int v) {
e[++cnt]=(edge){v,head[u],0};head[u]=cnt;
}
void dfs(int x) {
dfn[x]=++cnt;
for (int i=1;i<=20;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa[x][0]) {
mn[e[i].to]=min(mn[x],e[i].w);
fa[e[i].to][0]=x;
deep[e[i].to]=deep[x]+1;
dfs(e[i].to);
}
}
int lca(int x,int y) {
if (deep[x]<deep[y]) swap(x,y);
int t=deep[x]-deep[y];
for (int i=0;bin[i]<=t;i++) if (bin[i]&t) x=fa[x][i];
for (int i=20;i>=0;i--) if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
return x==y ? x : fa[x][0];
}
void build() {
cnt=0;int top=1,tot=1;
for (int i=2;i<=K;i++) if (lca(a[tot],a[i])!=a[tot]) a[++tot]=a[i];
s[top]=1;
for (int i=1;i<=tot;i++) {
int x;
while (top) {
x=lca(a[i],s[top]);
if (top>1 && deep[x]<deep[s[top-1]]) link(s[top-1],s[top]),top--;
else if (deep[x]<deep[s[top]]) {link(x,s[top--]);break;}
else break;
}
if (s[top]!=x) s[++top]=x;
s[++top]=a[i];
}
while (--top) link(s[top],s[top+1]);
}
void dp(int x) {
LL tmp=0;f[x]=mn[x];
for (int i=head[x];i;i=e[i].next) {
dp(e[i].to);
tmp+=f[e[i].to];
}
head[x]=0; //注意只能在这里清空邻接表,不然复杂度不对
f[x]=tmp==0 ? mn[x] : min(tmp,mn[x]);
}
int main() {
bin[0]=1;for (int i=1;i<=20;i++) bin[i]=bin[i-1]<<1;
scanf("%d",&n);
for (int u,v,w,i=1;i<n;i++) {
scanf("%d%d%d",&u,&v,&w);
link(u,v,w);
}
cnt=0;mn[1]=inf;dfs(1);
scanf("%d",&Q);
memset(head,0,sizeof(head));
for (int i=1;i<=Q;i++) {
scanf("%d",&K);
for (int j=1;j<=K;j++) scanf("%d",&a[j]);
sort(a+1,a+1+K,cmp);
build();
dp(1);
printf("%lld\n",f[1]);
}
return 0;
}

  

【bzoj2286】 消耗战的更多相关文章

  1. bzoj2286 消耗战

    还是虚树的题目啊... 如果只有一个询问,我们这么考虑,可以设dp[x]为只删除x子树内和x到父亲的边,使得x这棵子树内的能源岛屿都与x的父亲不连通的最小花费. 这样如果x本身是能源岛屿,那么dp[x ...

  2. [Bzoj2286]消耗战(虚树+DP)

    Description 题目链接 Solution 在虚树上跑DP即可 Code #include <cstdio> #include <algorithm> #include ...

  3. [SDOI2011][bzoj2286] 消耗战 [虚树+dp]

    题面: 传送门 思路: 看到所有询问中的点数总和是十万级别的,就想到用虚树~\(≧▽≦)/~啦 首先,树形dp应该是很明显可以看出来的: 设dp[u]表示以u为根的子树(不包括u)中的宝藏岛全部切断的 ...

  4. [bzoj2286][Sdoi 2011]消耗战

    [bzoj2286]消耗战 标签: 虚树 DP 题目链接 题解 很容易找出\(O(mn)\)的做法. 只需要每次都dp一遍. 但是m和n是同阶的,所以这样肯定会T的. 注意到dp的时候有很多节点是不需 ...

  5. DP——由蒟蒻到神犇的进阶之路

    开始更新咯 DP专题[题目来源BZOJ] 一.树形DP 1.bzoj2286消耗战 题解:因为是树形结构,一个点与根节点不联通,删一条边即可, 于是我们就可以简化这棵树,把有用的信息建立一颗虚树,然后 ...

  6. 【BZOJ2286】消耗战(虚树,动态规划)

    [BZOJ2286]消耗战(虚树,动态规划) 题面 BZOJ Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总 ...

  7. [BZOJ2286][SDOI2011]消耗战(虚树DP)

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4998  Solved: 1867[Submit][Statu ...

  8. 【BZOJ2286】[Sdoi2011]消耗战 虚树

    [BZOJ2286][Sdoi2011]消耗战 Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的 ...

  9. 虚树+【BZOJ2286】【SDOI2011】消耗战(虚树)(DP)

    先看一道题: [BZOJ2286][SDOI2011]消耗战 Description 在一场战争中,战场由n个岛屿和n−1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总 ...

  10. [BZOJ2286][Sdoi2011]消耗战(虚树上DP)

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6457  Solved: 2533[Submit][Statu ...

随机推荐

  1. LOG4NET日志配置及使用

    Log4net的安装 Install-Package log4net 1.先弄个日志记录的类 /// <summary> /// 使用LOG4NET记录日志的功能,在WEB.CONFIG里 ...

  2. 布局 - panel

    panel一般作为其他组件的容器使用 很多组件都继承自panel 对于面板中的内容,支持异步从后台加载,当然,作为纯粹的面板,一般不会用到这个,但他的子类对于这个功能还是蛮实用的 <%@ tag ...

  3. Kafka及 .NET Core 客户端

    消息队列 Kafka 的基本知识及 .NET Core 客户端 消息队列 Kafka 的基本知识及 .NET Core 客户端   前言 最新项目中要用到消息队列来做消息的传输,之所以选着 Kafka ...

  4. spring WebSocket详解

    场景 websocket是Html5新增加特性之一,目的是浏览器与服务端建立全双工的通信方式,解决http请求-响应带来过多的资源消耗,同时对特殊场景应用提供了全新的实现方式,比如聊天.股票交易.游戏 ...

  5. 让 HTML5 来为你定位

    Geolocation HTML5 的 geolocation 是一个令人兴奋的 API,通过这套 API,Javascript 代码就能够访问到用户的当前位置.当然,访问之前必须得到用户的明确认可, ...

  6. Orchard创建全局应用

    Orchard的本地化管理托管于一个外部服务(Crowdin),这个项目是公开的且欢迎大家做贡献. Orchard支持两种类型的本地: Orchard应用程序以及已安装模块中的文本字符串的本地化(其实 ...

  7. JVM内存管理------GC算法精解(五分钟让你彻底明白标记/清除算法)

    相信不少猿友看到标题就认为LZ是标题党了,不过既然您已经被LZ忽悠进来了,那就好好的享受一顿算法大餐吧.不过LZ丑话说前面哦,这篇文章应该能让各位彻底理解标记/清除算法,不过倘若各位猿友不能在五分钟内 ...

  8. matlab 绘制条形图

    Matlab使用bar和barh函数来绘制二维条形图.分别是绘制二维垂直条形图和二维水平条形图. 转自:http://jingyan.baidu.com/article/64d05a02524e63d ...

  9. android 开发之 百度地图的使用

    好久没写博客了,最近遇到个新需求 需要用到百度地图的基础地图,定位,理论上应该还会用到鹰眼的功能吧.具体还很难说.我现在 刚动工,就从头开始记录吧. 首先是先申请一个百度地图api的key 流程官网很 ...

  10. CSS hack技术

    首先我们要了解一个概念CSS hack 不同浏览器,比如IE6.IE7.IE8,Mozilla Firefox等,对CSS的支持及解析结果不同,因此会导致相同的网页生成的页面效果不一样. 这个时候我们 ...