有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i 种颜色的油漆足够涂ci 个木块。所有油漆刚好足够涂满所有木块,即

c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两个相邻木块颜色不同的着色方案。

Solution

有一个非常好的条件就是c[i]<=5,这样我们就可以设计状态为dp[1][2][3][4][5][la]表示有一个的有几种颜色,有两个的有几种颜色·····,上一次我们枚举的是哪里。

然后就愉快的记忆化搜索,注意要求相邻木块颜色不同的条件:例如我当前枚举1,如果我上一次枚举的二,那么有一个一我就不能选。

Code

#include<iostream>
#include<cstring>
#include<cstdio>
#define mod 1000000007
using namespace std;
typedef long long ll;
int dp[][][][][][],n,ji[],x;
int dfs(int one,int sec,int thi,int fou,int fiv,int hea){
if(~dp[one][sec][thi][fou][fiv][hea])return dp[one][sec][thi][fou][fiv][hea];
long long ans=;
if(one)(ans+=((ll)one-(hea==))*dfs(one-,sec,thi,fou,fiv,))%=mod;
if(sec)(ans+=((ll)sec-(hea==))*dfs(one+,sec-,thi,fou,fiv,))%=mod;
if(thi)(ans+=((ll)thi-(hea==))*dfs(one,sec+,thi-,fou,fiv,))%=mod;
if(fou)(ans+=((ll)fou-(hea==))*dfs(one,sec,thi+,fou-,fiv,))%=mod;
if(fiv)(ans+=(ll)fiv*dfs(one,sec,thi,fou+,fiv-,))%=mod;
return dp[one][sec][thi][fou][fiv][hea]=ans;
}
int main(){
scanf("%d",&n);
memset(dp,-,sizeof(dp));
for(int i=;i<=;++i)dp[][][][][][i]=;
for(int i=;i<=n;++i)scanf("%d",&x),ji[x]++;
printf("%d",dfs(ji[],ji[],ji[],ji[],ji[],));
return ;
}

SCOI2008着色方案(记忆化搜索)的更多相关文章

  1. BZOJ 1079: [SCOI2008]着色方案 记忆化搜索

    1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  2. BZOJ1079: [SCOI2008]着色方案 (记忆化搜索)

    题意:有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木块涂相同色显得很 ...

  3. bzoj1079 着色方案 记忆化搜索(dp)

    题目传送门 题目大意: 有k种颜色,每个颜色ci可以涂个格子,要求相邻格子颜色不能一样,求方案数.ci<=5,k<=15. 思路: 题目里最重要的限制条件是相邻格子颜色不能相同,也就是当前 ...

  4. 洛谷P4133 [BJOI2012]最多的方案(记忆化搜索)

    题意 题目链接 求出把$n$分解为斐波那契数的方案数,方案两两不同的定义是分解出来的数不完全相同 Sol 这种题,直接爆搜啊... 打表后不难发现$<=1e18$的fib数只有88个 最先想到的 ...

  5. 【P2476】着色方案(记忆化搜索+特殊的DP数组)

    这个题代码难度几乎为0,然而思维难度对于蒟蒻来说简直是突破天际啊!首先我思考的是这个油漆的种类只有15种,是不是可以像一道叫做8数码难题的东西暴力15维数组呢..计算发现不可以....空间会直接让你学 ...

  6. BZOJ1079 [SCOI2008]着色方案 【dp记忆化搜索】

    题目 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难看 ...

  7. [SCOI2008]着色方案 递推 记忆化搜索

    我们发现 $c_{i}$ 和 $k$ 的规模非常小我们还发现每种颜色的位置是不必知道的,只要这种颜色和相邻的颜色种类不同即可.定义状态 $f[a][b][c][d][e][last]$,代表有 $a$ ...

  8. [BJOI2012]最多的方案(记忆化搜索)

    第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的和的形式. ...

  9. 【洛谷】3953:逛公园【反向最短路】【记忆化搜索(DP)统计方案】

    P3953 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条 ...

随机推荐

  1. API接口TOKEN设计

    首先需要知道API是什么?   API(Application Programming Interface)即应用程序接口.你可以认为 API 是一个软件组件或是一个 Web 服务与外界进行的交互的接 ...

  2. php开发之系统函数

    一些常用的php开发之系统函数的使用,可以使我们的开发效率,事倍功半 1) BC高精度函数库 2)

  3. Nginx三部曲(3)SSL

    我们将告诉你 Nginx 的运作模式.蕴含的概念,怎样通过调优 Nginx 来提高应用性能,或是如何设置它的启动和运行. 这个教程有三个部分: 基本概念 —— 这部分需要去了解 Nginx 的一些指令 ...

  4. gulp项目和webpack项目在浏览器中查看的方式

    在存在.git的目录下,按住shift+左键,打开命令行或者使用git Bash Gulp: 输入gulp dev 本地起一个服务器,在项目中找到gulp.js,然后找本地服务器,找到host和por ...

  5. macbookpro 以及 surface 的技术规格

    macbookpro 13.3 英寸 (对角线) LED 背光显示屏 (采用 IPS 技术):初始分辨率 x ( ppi),支持数百万色彩 15.4 英寸 (对角线) LED 背光显示屏 (采用 IP ...

  6. zsh & tree & macOS

    zsh & tree & macOS https://unix.stackexchange.com/questions/22803/counting-files-in-leaves-o ...

  7. github & markdown & collapse & table

    github & markdown collapse & table https://github.com/Microsoft/TypeScript/issues/30034 GitH ...

  8. js一元运算符

    否运算符(按位非):~    加1取反 console.log(~-); console.log(~-); console.log(~); //-1 void():计算表达式,但是不返回值(仅仅是不返 ...

  9. 使用javaWeb的二大(Listener、Filter)组件实现分IP统计访问次数

    分析: 统计工作需要在所有资源之前都执行,那么就可以放到Filter中. 我们这个过滤器不打算做拦截操作!因为我们只是用来做统计 用什么东西来装载统计的数据.Map<String,Integer ...

  10. matlab中randn(‘state’)

    matlab中randn(‘state’)转载:http://www.cnblogs.com/rong86/p/3572284.html randn('state') 随机数都是由RandStream ...