BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set
题目链接:
题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一直回复$p_{i}$的血量,只有在攻击后会回血),杀死一条龙当且仅当攻击结束后或回复血量之后血量为$0$,杀死一条龙会获得一个新的武器。现在要求对每条龙攻击固定次数$x$求出最小的$x$,使所有龙都能被杀死。
因为每次选择的武器是固定的,所以只要用$multiset$存当前剩下的武器然后每次按题目规则取即可。设攻击第$i$条龙的武器攻击力为$ti$,那么可以得到$n$个不定方程$x*t_{i}-k*p_{i}=a_{i}$。对于每个不定方程因为$p_{i}$与$t_{i}$不一定互质,所以求出$d=gcd(p_{i},t_{i})$并将等式两边都除掉$d$(如果$a_{i}$不能整除$d$则无解)。这样每个方程就能用$exgcd$解出最小的非负整数解$x_{i}$,那么显然$x\equiv x_{i}(mod\ \frac{p_{i}}{d})$。由此得到了$n$个方程的同余方程组(设每个同余方程的模数为$m_{i}$,即为上面的$\frac{p_{i}}{d}$),由于模数不一定互质,所以要用扩展CRT来求出最小的$x$。因为要保证攻击能将每条龙打到至少$0$血,即$x*t_{i}>=a_{i}$,所以要求出将每条龙打到$0$血或往下的最小次数的最大值$mx$,只要$x$小于$mx$就不停地给$x$加上$lcm(m_{1},m_{2}...m_{n})$。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define INF 4e18+10
using namespace std;
ll c1,m1,c2,m2;
int N,M,T;
ll mx,x;
ll lcm;
multiset<ll>s;
multiset<ll>::iterator it;
ll a[100010];
ll p[100010];
ll b[100010];
ll t[100010];
ll c[100010];
ll m[100010];
ll quick(ll x,ll y,ll mod)
{
ll res=0ll;
while(y)
{
if(y&1)
{
res=(res+x)%mod;
}
y>>=1;
x=(x+x)%mod;
}
return res;
}
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=1;y=0;
return ;
}
exgcd(b,a%b,y,x);
y-=(a/b)*x;
}
ll inv(ll n,ll mod)
{
ll x,y;
exgcd(n,mod,x,y);
return (x%mod+mod)%mod;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&N,&M);
s.clear();
mx=0;
for(int i=1;i<=N;i++)
{
scanf("%lld",&a[i]);
}
for(int i=1;i<=N;i++)
{
scanf("%lld",&p[i]);
}
for(int i=1;i<=N;i++)
{
scanf("%lld",&t[i]);
}
for(int i=1;i<=M;i++)
{
scanf("%lld",&x);
s.insert(x);
}
for(int i=1;i<=N;i++)
{
it=s.upper_bound(a[i]);
if(it!=s.begin())
{
it--;
}
b[i]=*it;
s.erase(it);
s.insert(t[i]);
}
bool flag=false;
for(int i=1;i<=N;i++)
{
mx=max(mx,(a[i]-1)/b[i]+1);
ll d=gcd(b[i],p[i]);
if(a[i]%d)
{
flag=true;
break;
}
ll x,y;
exgcd(b[i]/d,p[i]/d,x,y);
ll P=p[i]/d;
x=quick(x,a[i]/d,P);
x=(x%P+P)%P;
c[i]=x;
m[i]=P;
}
if(flag)
{
printf("-1\n");
continue;
}
flag=false;
m1=m[1],c1=c[1];
for(int i=2;i<=N;i++)
{
c2=c[i],m2=m[i];
ll d=gcd(m1,m2);
if((c2-c1)%d)
{
flag=true;
break;
}
ll g=inv(m1/d,m2/d);
ll sum=quick((c2-c1)/d,g,m2/d);
ll mod=quick(m1,m2/d,INF);
sum=quick(sum,m1,mod);
sum+=c1,sum%=mod;
c1=sum,m1=mod;
}
if(flag)
{
printf("-1\n");
continue;
}
c1=(c1%m1+m1)%m1;
ll ans=1ll;
for(int i=1;i<=N;i++)
{
ll d=gcd(ans,m[i]);
ans=quick(ans/d,m[i],INF);
}
if(c1>=mx)
{
printf("%lld\n",c1);
continue;
}
ll res=ceil((double)(mx-c1)/ans);
c1+=quick(ans,res,INF);
printf("%lld\n",c1);
}
}
BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set的更多相关文章
- NOI2018屠龙勇士(扩展CRT + splay(multiset))
QWQ 一到假期就颓废 哎 今年新鲜出炉的NOI题,QwQ同步赛的时候写的,后来交了一发洛谷,竟然过了 首先 根据题目,我们很容易得到,假设对应每一条龙的剑的攻击力是\(atk\)的话 \[a_i-x ...
- 洛谷P4774 BZOJ5418 LOJ2721 [NOI2018]屠龙勇士(扩展中国剩余定理)
题目链接: 洛谷 BZOJ LOJ 题目大意:这么长的题面,就饶了我吧emmm 这题第一眼看上去没法列出同余方程组.为什么?好像不知道用哪把剑杀哪条龙…… 仔细一看,要按顺序杀龙,所以获得的剑出现的顺 ...
- BZOJ5418:[NOI2018]屠龙勇士(exCRT,exgcd,set)
Description Input Output Sample Input 23 33 5 74 6 107 3 91 9 10003 23 5 64 8 71 1 11 1 Sample Outpu ...
- LOJ2721 [NOI2018] 屠龙勇士 【扩展中国剩余定理】
好久没写了,写一篇凑个数. 题目分析: 这题不难想,讲一下中国剩余定理怎么扩展. 考虑$$\left\{\begin{matrix}x \equiv a\pmod{b}\\ x \equiv c\pm ...
- BZOJ5418 NOI2018屠龙勇士(excrt)
显然multiset求出每次用哪把剑.注意到除了p=1的情况,其他数据都保证了ai<pi,于是先特判一下p=1.比较坑的是还可能存在ai=pi,稍微考虑一下. 剩下的部分即解bix≡ai(mod ...
- BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt
BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt Description www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf 每次用 ...
- P4774 [NOI2018]屠龙勇士
P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) ...
- [洛谷P4774] [NOI2018]屠龙勇士
洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...
- uoj396 [NOI2018]屠龙勇士
[NOI2018]屠龙勇士 描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 1∼n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 ai .同时每条巨龙拥有恢复能 ...
随机推荐
- Spring Boot 2.0(八):Spring Boot 集成 Memcached
Memcached 介绍 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站 ...
- Jquery遍历之获取子级元素、同级元素和父级元素
Jquery遍历之获取子级元素.同级元素和父级元素 Jquery的遍历,其实就当前位置的元素相对于其他元素的位置的关系进行查找或选取HTML元素.以某项选择开始,并沿着这条线进行移动,或向上(父级). ...
- DevOps工程师到底做些什么?
我们之前已经听到很多谈论DevOps和DevOps世界的最新趋势的事情,但是就DevOps工程师本身,到底干些什么呢? 在最纯粹的存在形式上来说,DevOps工程师是为了加快开发和运营团队之间的交付效 ...
- Python_内置函数之zip
zip函数用于将可迭代的对象作为参数,将对象中的元素打包成一个个元祖,然后返回这些元祖组成的列表.如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同. l1 = [1, 2, 3] l2 ...
- [2017BUAA软工助教]个人项目准备工作
BUAA软工个人项目准备工作 零.注册Github个人账号(你不会没有吧..) 这是Git的使用教程: http://www.cnblogs.com/schaepher/p/5561193.html ...
- python自动化常见问题汇总
1.如何提高selenium脚本的执行速度? Selenium脚本的执行速度受多方面因素的影响,如网速,操作步骤的繁琐程度,页面加载的速度,以及我们在脚本中设置的等待时间,运行脚本的线程 ...
- Satis搭建composer私有库(自定义下载目录)
在我们的日常php开发中需要使用大量的第三方包和类库, 怎么管理是一个问题, 我们用的Yii2框架, 但是并没有把composer用起来, 由于最近更换为docker部署项目, 于是想起来用compo ...
- mysql sql执行计划
查看Mysql执行计划 使用navicat查看mysql执行计划: 打开profile分析工具: 查看是否生效:show variable like ‘%profil%’; 查看进程:show pro ...
- Day 5-6 反射和内置方法之item系列
python面向对象中的反射:通过字符串的形式操作对象相关的属性.python中的一切事物都是对象(都可以使用反射) #!_*_ coding:utf-8 _*_ class People: def ...
- css3特殊图形(气泡)
一.气泡 效果: body{ background: #dd5e9d; height: 100%; } .paopao { position: absolute; width: 200px; heig ...