import mnist_loader
from network3 import Network
from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
mini_batch_size = 10 #NN算法:sigmoid函数;准确率97%
net = Network([
FullyConnectedLayer(n_in=784, n_out=100),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
net.SGD(training_data, 60, mini_batch_size, 0.1, validation_data, test_data) #CNN算法:1层Convolution+sigmoid函数;准确率98.78%
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2)),
FullyConnectedLayer(n_in=20*12*12, n_out=100),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) #CNN算法:2层Convolution+sigmoid函数;准确率99.06%。层数过多并不会使准确率大幅度提高,有可能overfit,合适的层数需要通过实验验证出来,并不是越多越好
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2)),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
poolsize=(2, 2)),
FullyConnectedLayer(n_in=40*4*4, n_out=100),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) #CNN算法:用Rectified Linear Units即f(z) = max(0, z),代替sigmoid函数;准确率99.23%
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU), #激活函数采用ReLU函数
ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) #CNN算法:用ReLU函数+增大训练集25万(原先50000*5,只需将每个像素向上下左右移动一个像素);准确率99.37%
$ python expand_mnist.py #将图片像素向上下左右移动
expanded_training_data, _, _ = network3.load_data_shared("../data/mnist_expanded.pkl.gz")
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
net.SGD(expanded_training_data, 60, mini_batch_size, 0.03,validation_data, test_data, lmbda=0.1) #CNN算法:用ReLU函数+增大训练集25万+dropout(随机选取一半神经元)用在最后的FullyConnected层;准确率99.60%
expanded_training_data, _, _ = network3.load_data_shared("../data/mnist_expanded.pkl.gz")
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
FullyConnectedLayer(
n_in=40*4*4, n_out=1000, activation_fn=ReLU, p_dropout=0.5),
FullyConnectedLayer(
n_in=1000, n_out=1000, activation_fn=ReLU, p_dropout=0.5),
SoftmaxLayer(n_in=1000, n_out=10, p_dropout=0.5)],
mini_batch_size)
net.SGD(expanded_training_data, 40, mini_batch_size, 0.03,validation_data, test_data)

CNN:人工智能之神经网络算法进阶优化,六种不同优化算法实现手写数字识别逐步提高,应用案例自动驾驶之捕捉并识别周围车牌号—Jason niu的更多相关文章

  1. 用Keras搭建神经网络 简单模版(二)——Classifier分类(手写数字识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  2. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  3. 利用神经网络算法的C#手写数字识别

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70. ...

  4. 利用神经网络算法的C#手写数字识别(一)

    利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwri ...

  5. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  6. C#中调用Matlab人工神经网络算法实现手写数字识别

    手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写 ...

  7. 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu

    对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...

  8. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  9. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

随机推荐

  1. ssh 登录报错 packet_write_wait: Connection to x.x.x.x port 22: Broken pipe

    问题 更新个人博客文章时遇到:Error: packet_write_wait: Connection to 192.30.253.113 port 22: Broken pipe packet_wr ...

  2. linux之iptables常用命令

    iptables详解 iptables -L 该命令会以列表的形式显示出当前使用的 iptables 规则,每一条规则前面的编号可以用来做为其它操作--例如删除操作--的参数,很有用 iptables ...

  3. maven添加镜像与常用配置

    maven解压后conf文件夹有个 settings.xml 在这个文件中可以配置我们的maven 配置镜像: 找到<mirrors></mirrors>找到这个节点在节点中添 ...

  4. jQuery File Upload的使用

    jQuery File Upload 是一个Jquery文件上传组件,支持多文件上传.取消.删除,上传前缩略图预览.列表显示图片大小,支持上传进度条显示等,以下就介绍一下该插件的简单使用 1.需要加载 ...

  5. Nginx详解七:Nginx基础篇之Nginx官方模块

    Nginx官方模块 --with-http_stub_status_module:Nginx的客户端状态,用于监控连接的信息,配置语法如下:配置语法:stub_status;默认状态:-配置方法:se ...

  6. JS去除空格和换行的正则表达式(推荐)

    //去除空格  String.prototype.Trim = function() {  return this.replace(/\s+/g, "");  }    //去除换 ...

  7. Allegro PCB Design GXL (legacy) 使用slide推挤走线,走线的宽度就发生改变的原因

    Allegro PCB Design GXL (legacy) version 16.6-2015 使用slide推挤走线,走线的宽度就会发生改变. 后来发现是因为约束管理器(Constraint M ...

  8. MySQL is running but PID file could not be found(解决方法)

    启动MySQL时报错: [root@xzw /]# service mysqld status MySQL is running but PID file could not be found    ...

  9. Visual Studio 2017 error: Unable to start program, An operation is not legal in the current state

    For me, the solution (workaround) is to turn off JavaScript debugging on Chrome, which I believe is ...

  10. 有一个字典对象,d = {'a':1,'b':2},请用尽量简洁的代码将d转换成{1: 'a', 2: 'b'}

    题目:有一个字典对象,d = {'a':1,'b':2},请用尽量简洁的代码将d转换成{1: 'a', 2: 'b'} 第一种方法: d = {'a': 1, 'b': 2}d = {value: k ...