一、背景

最近有个需求,需要获取某个位置附近的楼盘,**比如:**获取当前用户所在位置,方圆100km千米之内的楼盘信息。经过调研,发现可以使用 redismongodbelasticsearch等实现。经过考虑之后决定使用es来实现,此处简单记录下esgeo方面api的使用。

二、geo数据类型

es中存在2种地理位置数据类型,geo_pointgeo_shapees无法自动识别这种数据类型,需要在创建mapping的时候,自己手动指定。

1、geo_point

geo_point使用的是经纬度的坐标点,可以计算落在某个矩形内的点、以某个点为半径(圆)的点、某个多边形内的点(弃用了)、排序、聚合等操作。

2、geo_shape

geo_shape表示的是一个复杂的图形,使用的是GeoJSON的格式来表示复杂的图形。比如:我们要表示一个图书馆的坐标位置,如果图书馆占的位置比较大,用一个点表示可能就不准了,此时就可以使用geo_shape来表示了。

不过这种数据类型也有缺点:比如不能排序等等(因为是多边形的点)。

三、此处对geo_point类型实战

1、背景

1、图中的 ① ② ③ ④ 表示是需要加入到 es 中的建筑物

建筑物 坐标 距离地点 相隔距离 解释
上海站 121.462311,31.256224 上海站
上海静安洲际酒店 121.460186,31.251281 上海站 586.24米 上海站和该酒店大概像个586.24米
交通公园 121.473939,31.253531 上海站 1146.45米
万业远景大厦 121.448215,31.26229 上海站 1501.74米

2、图中的圆形、正方形、多边形表示后期需要使用 es 查询出来里面里面的地点。

3、图中的短小的箭头️表示边界。

2、插入地点数据

1、创建索引

PUT /geo_index
{
"settings": {
"number_of_shards": 2,
"number_of_replicas": 2,
"analysis": {
"analyzer": {
"default": {
"type": "ik_max_word"
}
}
}
},
"mappings": {
"properties": {
"building_name": {
"type": "keyword"
},
"location": {
// 此处手动指定数据类型
"type": "geo_point"
}
}
}
}

注意️:

1、在索引中,我们自己指定来location字段的类型为geo_point类型。

2、building_name的字段类型为keyword表示不分词,这个字段只是为了测试,没有什么用。

3、不用指定索引的type,在es7中只有一个type。

2、插入地理位置数据

POST _bulk
{"create":{"_index":"geo_index","_id":1}}
{"building_name":"上海站","location":{"lat":31.256224,"lon":121.462311}}
{"create":{"_index":"geo_index","_id":2}}
{"building_name":"上海静安洲际酒店","location":"POINT (121.460186 31.251281)"}
{"create":{"_index":"geo_index","_id":3}}
{"building_name":"交通公园","location":"31.253531,121.473939"}
{"create":{"_index":"geo_index","_id":4}}
{"building_name":"万业远景大厦","location":[121.448215,31.26229]}

注意️:

1、从上面可知:地理位置的插入的格式可以存在4种方式。

1、 {"lat":"","lon":""}
2、 "lat,lon"
3、 [Well-Known Text](https://docs.opengeospatial.org/is/12-063r5/12-063r5.html) "POINT (lon lat)"
4、 [lon,lat]
5、 还有一种 geohash 的格式 需要注意的是:使用 数组/Well-Known-Text 的格式的时候,经纬度是反过来的。

3、执行检索

1、geo_bounding_box 矩形过滤

从上图可知左上角和右下方的坐标分别为 (121.444075,31.265395)和(121.468417,31.253845)

执行查询,应该可以查询出 上海站万业远景大厦

1、es查询语句

GET /geo_index/_search
{
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_bounding_box": {
"location": {
"top_left": {
"lat": 31.265395,
"lon": 121.444075
},
"bottom_right": {
"lat": 31.253845,
"lon": 121.468417
}
}
}
}
}
}
}

2、查询结果

从图中可以看到,查询出来了 上海站万业远景大厦,结果是正确的。

2、geo_distance 圆形查询

这个是距离查询,是以某个点向周围扩算的距离范围。

在上一步的背景中,我们知道上海站的坐标(121.462311,31.256224),同时也知道了上海站距离各个周边的距离有多远,此处我们以上海站为中心,查询方圆600米的建筑物,可知只有上海静安洲际酒店上海站符合。

1、es查询语句

GET /geo_index/_search
{
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "600m",
"distance_type": "arc",
"_name":"optional_name",
"location": {
"lat": 31.256224,
"lon": 121.462311
}
}
}
}
}
}

注意️:

1、distance_type的值存在2个 arcplane

  • arc:默认的方式,这种方式计算比较精确,但是比较慢,是把地球当作一个球体计算。

  • plane:这种方式计算比较快,但是可能不怎么准,越靠近赤道越准,是把地球当成平坦的进行计算。

2、distance后面可用的单位有kmmcmmmnmimiydftin

2、查询结果

3、geo_distance 查询并排序,返回距离相隔多少米

1、es 查询语句

GET /geo_index/_search
{
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "600m",
"distance_type": "arc",
"_name": "optional_name",
"location": {
"lat": 31.256224,
"lon": 121.462311
}
}
}
}
},
"sort": [
{
"_geo_distance": {
"location": {
"lat": 31.256224,
"lon": 121.462311
},
"order": "desc",
"unit": "m",
"distance_type": "arc"
}
}
]
}

注意️:

1、sort执行排序。

2、查询结果

4、geo_distance聚合

需求:

1. 统计`上海站`500米之内的建筑物有多少。
2. 统计`上海站`500-1000米之内的建筑物有多少。
3. 统计`上海站`大于1000米的建筑物有多少。

1、es查询语句

GET /geo_index/_search
{
"query": {
"bool": {
"must": {
"match_all": {}
}
}
},
"aggs": {
"rings_around_amsterdam": {
"geo_distance": {
"field": "location",
"origin": {
"lat": 31.256224,
"lon": 121.462311
},
"unit": "m",
"distance_type": "arc",
"ranges": [
{"to": 500,"key": "first"},
{"from": 500,"to": 1000,"key": "second" },
{"from": 1000,"key": "third"}
],
"keyed": true
}
}
}
}

2、查询结果

从上图中可以看到:

1、距离上海站在 0-500米之间的建筑物只有1个。

2、距离上海站在 500-1000之间的建筑物有1个。

3、距离上海站在 1000以上的有2个。

5、geo-polygon-多边形查询(过时)

在 es7.12 中已经过时了,推荐使用 geo_shape来实现

6、一个综合案例

1、需求:

1、查询语句query,查询出所有的数据,并过滤出以上海站为中心的3km内的所有的建筑物。

2、aggs,用于统计出上海在 500米以内、500-1000米、1000米之外的建筑物数量。

3、sort用于排序。

4、post_filter用于将结果缩小到上海站1000米以内。

2、查询结果

GET /geo_index/_search
{
"query": {
"bool": {
"must": {
"match_all": {}
},
// 过滤出上海站周围3km范围内的建筑物
"filter": {
"geo_distance": {
"distance": "3km",
"distance_type": "arc",
"_name":"optional_name",
"location": {
"lat": 31.256224,
"lon": 121.462311
}
}
}
}
},
// 聚合上海站周围的建筑物的数量
"aggs": {
"rings_around_amsterdam": {
"geo_distance": {
"field": "location",
"origin": {
"lat": 31.256224,
"lon": 121.462311
},
"unit": "m",
"distance_type": "arc",
"ranges": [
{"to": 500,"key": "first"},
{"from": 500,"to": 1000,"key": "second" },
{"from": 1000,"key": "third"}
],
"keyed": true
}
}
},
// 对查询到的结果排序,并将距离放到响应数据的 sort 字段中。
"sort": [
{
"_geo_distance": {
"location": {
"lat": 31.256224,
"lon": 121.462311
},
"order": "desc",
"unit": "m",
"distance_type": "arc"
}
}
],
// 将结果缩小到上海站附近1km的范围内。
"post_filter": {
"geo_distance": {
"distance": "1km",
"location": {
"lat": 31.256224,
"lon": 121.462311
}
}
}
}

四、参考文档

1、geo_point数据类型

2、距离单位

3、排序

4、矩形查询

5、圆形查询,距离查询

6、坐标拾取系统

elasticsearch地理位置查询的更多相关文章

  1. Java High Level REST Client 使用地理位置查询

    Java High Level REST Client 使用地理位置查询 一.需求 二.对应的query语句 三.对应java代码 1.引入 jar 包 2.创建 RestHighLevelClien ...

  2. 【转】elasticsearch的查询器query与过滤器filter的区别

    很多刚学elasticsearch的人对于查询方面很是苦恼,说实话es的查询语法真心不简单-  当然你如果入门之后,会发现elasticsearch的rest api设计是多么有意思. 说正题,ela ...

  3. 基于百度地图SDK和Elasticsearch GEO查询的地理围栏分析系统(1)

    本文描述了一个系统,功能是评价和抽象地理围栏(Geo-fencing),以及监控和分析核心地理围栏中业务的表现. 技术栈:Spring-JQuery-百度地图WEB SDK 存储:Hive-Elast ...

  4. Elasticsearch Kibana查询语法

    Elasticsearch Kibana查询语法 2018年06月03日 23:52:30 wangpei1949 阅读数:3992   Elasticsearch Kibana Discover的搜 ...

  5. MongoDB的地理位置查询,以及和mysql的使用对比

    MongoDB的一个特色就是具有丰富的查询接口,比如地理位置查询. 在地理位置查询上,MongoDB有着比传统关系型数据库的优势,下面举个例子. 当前移动互联网应用,按用户离目标门店距离排序上的场景很 ...

  6. ElasticSearch—分页查询

    ElasticSearch查询—分页查询详解 Elasticsearch中数据都存储在分片中,当执行搜索时每个分片独立搜索后,数据再经过整合返回.那么,如何实现分页查询呢? 按照一般的查询流程来说,如 ...

  7. Elasticsearch 邻近查询示例

    Elasticsearch 邻近查询示例(全切分分词) JAVA API方式: SpanNearQueryBuilder span = QueryBuilders.spanNearQuery(); s ...

  8. elasticsearch简单查询

    elasticsearch简单查询示例: { "from": "0", //分页,从第一页开始 "size": "10" ...

  9. ElasticSearch高级查询

    ElasticSearch高级查询 https://www.imooc.com/video/15759/0 ElasticSearch查询 1,子条件查询:特定字段查询所指特定值 1.1query c ...

随机推荐

  1. Spring Cloud Eureka 之常用配置解析

    [原创内容,转载.引用请注明出处] 1. 配置项解析 1.1 通用配置 # 应用名称,将会显示在Eureka界面的应用名称列 spring.application.name=config-servic ...

  2. Spring Native实战(畅快体验79毫秒启动springboot应用)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. TP5缩放图片加水印

    // 给图片增加水印文字 试验缩放图片,放大图片,加水印,加文字功能 public function doCreateImage1($data,$path) { $basePath = ROOT_PA ...

  4. IDEA - 2019中文版安装教程

    前言 个人安装备忘录 软件简介 IDEA 全称IntelliJ IDEA,是java语言开发的集成环境,在业界被公认为最好的java开发工具之一,尤其在智能代码助手.代码自动提示.重构.J2EE支持. ...

  5. lightweight openpose 入门实操笔记(pytorch环境)

    最近有个小项目要搞姿态识别,简单调研了一下2D的识别: 基本上是下面几种 (单人)single person 直接关键点回归 heatmap,感觉其实就是把一个点的标签弄成一个高斯分布 (多人)mul ...

  6. php 日期相关的类 DateInterval DateTimeZone DatePeriod

    * DateInterval <?php /** * Created by PhpStorm. * User: Mch * Date: 7/18/18 * Time: 21:30 */ $dat ...

  7. 网站优化之mysql优化

    一,网站优化之mysql优化:1.前缀索引,可以通过前缀去识别唯一性,把这个前缀作为索引内容,可以节省存储索引的空间,从而提高索引的查询速度.distinct 排重操作2,2.in条件索引使用同时查询 ...

  8. lua文件修改为二进制文件

    注意:lua编译跟luajit编译的二进制文件是不兼容,不能运行的 如果是使用luajit,请直接使用luajit直接编译二进制 第一种:luajit编译(以openresty为例,跟luac是相反的 ...

  9. pyqt5实现窗口跳转并关闭上一个窗口

    关键在于要定义一个关闭窗体的函数colsewin() 然后将按键与该函数连接(connect)在一起即可 import sys from PyQt5.QtWidgets import QMainWin ...

  10. Wannafly挑战赛10F-小H和遗迹【Trie,树状数组】

    正题 题目链接:https://ac.nowcoder.com/acm/contest/72/F 题目大意 \(n\)个字符串,包括小写字母和\(\#\).其中\(\#\)可以替换为任意字符串.求有多 ...