3D-LiDAR

结合光学+激光扫描+数据处理技术,实现对人和物体的无盲点检测。

利用专有光学技术实现高精度,高分辨率三维扫描。

到目前为止,传感器只能准确地检测出物体的存在,而且很难感知目标的大小和形状。为了提高精度,必须增加激光器的数量,这就产生了激光束之间出现盲点的新问题。将其专有的光学技术应用于这些技术挑战,并创建了一个广域3D激光雷达,仅使用一束具有高扫描精度、高分辨率和无盲点的激光。

高精度,广域扫描能力。专有激光投影/接收技术+广域扫描技术。

三维激光雷达发射激光搜索一个区域的对象,并测量一个对象所处的距离。使用TOF(飞行时间)测量距离,TOF是投射的激光从物体反射并返回传感器所需的时间。通过激光反射时间的微小差异获得三维图像,使得以10fps的速度进行实时测量成为可能。光的反射强度也被记录下来。

专有的激光投影/接收和广域扫描技术可实现最大水平120度的探测半径。用24条激光垂直线获得了较高的垂直分辨率。广域扫描技术使无盲点的高精度数据无需行间距即可进行远距离扫描成为可能。探测范围从50米到人,100米到车(带反射器),最大范围200米。

3D LiDAR scan illustration. The seamless scan leaves no spaces between spots.

实时三维数据采集,运动检测/行为分析/形状识别技术

三维激光雷达不仅可以区分形状和物体,而且可以区分运动物体。这意味着可以获取城市中移动的人或车辆的数据。通过10fps的实时检测,甚至可以测量一些人之间的空间和他们的步行速度。从累积的行为数据中,可以确定行人和车辆的行为模式,预测无意的乱穿马路或发现可疑活动。三维测量的另一个特点是能够在三维环境中从正面、鸟瞰和其他任何角度看到数据。除了从不同角度获取移动人员和车辆的数据外,还可以从地理和建筑物等结构获取反馈。

三维激光雷达在各个领域的未来应用

通过传感器融合增加功能。自动驾驶汽车开发中的实时检测。

实时检测能力是自动驾驶汽车发展的完美匹配。自动驾驶车辆必须能够探测到自己以及附近其他车辆、行人和障碍物的位置。三维激光雷达与陀螺传感器(用于稳定)和GPS(用于定位数据)相连接,可以获取非常详细的三维实时数据,检测行人以确保安全,并为自动驾驶创建高精度地图。它还可以区分道路线和沥青。

夜间自动驾驶时,检测系统不得受前照灯、路灯和环境光的影响,并能准确检测车辆和行人。在Konica Minolta的高精度同轴光学技术中,从3D激光雷达发射的光沿着相同的路径返回。因此,阳光、头灯和环境光线都被尽可能的过滤掉,使其成为安全等户外使用的高品质选择。通过测量返回光的强度,它可以区分道路线和沥青等主题。

通过数据分析更大的可能性。体育/市场营销中的行为分析。

行为分析在广域安全、市场营销和体育运动中的应用是值得期待的。例如,在安全方面,可以建立更高精度的安全系统,根据大小和行为分析数据来区分人和动物之间的差异。在市场营销中,商店里的货架可以被监控,以识别受欢迎的产品。在体育运动中,在足球场同时使用几个三维激光雷达可以实时跟踪球员在广阔场地上的位置。可以收集每个运动员的跑步速度和距离的详细数据,并创建他们运动区域的热图,以可能有助于制定更有效的策略。

在需要大面积测量的领域中的应用。用于三维形状测量的装运/施工。

三维形状测量可以一次监测大面积,使之成为土木工程或建筑工地安全的最佳选择。在拥有大型财产的船运仓库和土木工程工地,货物和材料不断流动。形状测量可以识别危险品,防止盗窃。在土木工程和建筑工地,可以跟踪进度,预测危险或需要先发制人的检查。

帮助解决客户问题,通过SDK提供和解决方案建议。

为了提高三维激光雷达测量数据的分析能力,提供了一套软件开发工具和支持,可以根据使用情况简化和缩短实现过程。通过小型化和远距离测量的进一步应用正在开发中,通过传感器融合的增值来进一步扩大用途,将有助于解决各种社会和客户问题。

3D-LiDAR的更多相关文章

  1. segMatch:基于3D点云分割的回环检测

    该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图 ...

  2. 论文阅读 Characterization of Multiple 3D LiDARs for Localization and Mapping using Normal Distributions Transform

    Abstract 在这个文章里, 我们细致的比较了10种不同的3D LiDAR传感器, 用了一般的 Normal Distributions Transform (NDT) 算法. 我们按以下几个任务 ...

  3. 固态LiDAR,半固态混合LiDAR,机械LiDAR

    固态LiDAR,半固态混合LiDAR,机械LiDAR 1. APD/SPAD 2轴MEMS扫描镜+ SPAD图像传感器在混合固态LiDAR中的应用 APD的工作模式分为线性模式和盖革模式两种.当APD ...

  4. ROS机器人程序设计(原书第2版)补充资料 (肆) 第四章 在ROS下使用传感器和执行器

    ROS机器人程序设计(原书第2版)补充资料 (肆) 第四章 在ROS使用传感器和执行器 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. 第四 ...

  5. (转)Autonomous_Vehicle_Paper_Reading_List

    Autonomous_Vehicle_Paper_Reading_List 2018-07-19 10:40:08 Reference:https://github.com/ZRZheng/Auton ...

  6. RGB-D数据集(SLAM的和行人检测的)

    移动机器人编程一般用mrpt,这个软件来做三维,里面封装了很多常用算法. http://www.mrpt.org/download-mrpt/ SLAM的数据集,其中包括机器人slam http:// ...

  7. Velodyne VPL16 configuration in ROS Kinetic

    1. 驱动安装 sudo apt-get install ros-kinetic-velodyne 2. 在已有工作空间catkin_ws中,添加Velodyne包 cd ~/catkin_ws/sr ...

  8. 转载:点云上实时三维目标检测的欧拉区域方案 ----Complex-YOLO

    感觉是机器翻译,好多地方不通顺,凑合看看 原文名称:Complex-YOLO: An Euler-Region-Proposal for  Real-time 3D Object Detection ...

  9. 文献阅读报告 - 3DOF Pedestrian Trajectory Prediction

    文献 Sun L , Yan Z , Mellado S M , et al. 3DOF Pedestrian Trajectory Prediction Learned from Long-Term ...

  10. 感知融合 awesome list

    感知融合 awesome list 雷达聚类 雷达处理杂波滤除 CFAR (Constant False Alarm Rate):Lee, Jae-Eun, et al. "Harmonic ...

随机推荐

  1. TP5学习记录(Model篇)

    ThinkPHP 数据库操作 数据库连接 #在config/database.php设置数据库连接参数或者利用Db::connect()方法设置数据库连接 /* * public static fun ...

  2. hdu1828 线段树扫描线求矩形面积的周长

    题意:       给你n个矩形,问你这n个矩形所围成的图形的周长是多少. 思路:       线段树的扫描线简单应用,这个题目我用的方法比较笨,就是扫描两次,上下扫描,求出多边形的上下边长和,然后同 ...

  3. Windows 2003 Server远程代码执行漏洞集合

    目录 MS08-067 CVE-2017-7269 MS08-067 发布日期:2008/10/22 针对端口:139.445 漏洞等级:高危 漏洞影响:服务器服务中的漏洞可能允许远程执行代码 受影响 ...

  4. WDK 标准数据类型

    刚刚看到vs2012可以完美支持wdk开发,心中窃喜,正要下载,竟然看到xp不在其支持范围内, 这让刚刚从win7换过来的我真是DT,算了,还是和学习资料保持一致,反正学习的重点不是方便 正题: 为了 ...

  5. Portswigger web security academy:DOM-based vulnerabilities

    DOM-based vulnerabilities 目录 DOM-based vulnerabilities 1 - DOM XSS using web messages 2 - DOM XSS us ...

  6. <JVM下篇:性能监控与调优篇>03-JVM监控及诊断工具-GUI篇

    笔记来源:尚硅谷JVM全套教程,百万播放,全网巅峰(宋红康详解java虚拟机) 同步更新:https://gitee.com/vectorx/NOTE_JVM https://codechina.cs ...

  7. Kafka源码分析系列-目录(收藏不迷路)

    持续更新中,敬请关注! 目录 <Kafka源码分析>系列文章计划按"数据传递"的顺序写作,即:先分析生产者,其次分析Server端的数据处理,然后分析消费者,最后再补充 ...

  8. 解决Latex输出PDF纸张自适应大小及中文无法显示问题

    遗留的问题 之前我们进行了基于texlive定制chemfig化学式转换Python服务镜像,虽然完成pdf的输出服务改造,但是输出效果并不是太好,如下图: 这个图有两个比较严重问题 不支持中文 空白 ...

  9. C++虚函数 - 静态函数能否为虚函数 .

    1.virtual与静态函数 C++中,静态成员函数不能被声明为virtual函数. 例如,下面的程序会编译失败. #include<iostream> class Test { publ ...

  10. 5分钟让你理解K8S必备架构概念,以及网络模型(上)

    写在前面 在这用XMind画了一张导图记录Redis的学习笔记和一些面试解析(源文件对部分节点有详细备注和参考资料,欢迎关注我的公众号:阿风的架构笔记 后台发送[导图]拿下载链接, 已经完善更新): ...