此题虽为紫,但其实在水

能量采集

题目描述

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。

栋栋的植物种得非常整齐,一共有 nn 列,每列有 mm 棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标 (x, y)(x,y) 来表示,其中 xx 的范围是 11 至 nn,yy 的范围是 11 至 mm,表示是在第 xx 列的第 yy 棵。

由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是 (0, 0)(0,0)。

能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有 kk 棵植物,则能量的损失为 2k + 12k+1。例如,当能量汇集机器收集坐标为 (2, 4)(2,4) 的植物时,由于连接线段上存在一棵植物 (1, 2)(1,2),会产生 33 的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为 11。现在要计算总的能量损失。

下面给出了一个能量采集的例子,其中 n = 5n=5,m = 4m=4,一共有 2020 棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。

在这个例子中,总共产生了 3636 的能量损失。

输入格式

一行两个整数 n,mn,m。

输出格式

仅包含一个整数,表示总共产生的能量损失。

输入

   5 4

输出

36

输入

   3 4

输出

20

过于简单,就自行看代码吧

Code

#include <bits/stdc++.h>
using namespace std;
const int N=100010;
int n,m;long long f[N],ans;
int main(){
cin>>n>>m;
if(n>m)
n^=m^=n^=m;
for(int i=n;i;--i){
f[i]=(long long)(n/i)*(m/i);
for(int j=i<<1;j<=n;j+=i)
f[i]-=f[j];
ans+=((i<<1)-1)*f[i];
}
cout<<ans;
return 0;
}

【洛谷】P1447 能量采集的更多相关文章

  1. [洛谷P5107]能量采集

    题目大意:有一张$n(n\leqslant50)$个点$m(m\leqslant n(n-1))$条边的有向图,每个点还有一个自环,每个点有一个权值.每一秒钟,每个点的权值会等分成出边个数,流向出边. ...

  2. bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演

    题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/ ...

  3. 洛谷P1063 能量项链(区间DP)(环形DP)

    To 洛谷.1063 能量项链 题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的 ...

  4. 『题解』洛谷P1063 能量项链

    原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...

  5. P1447能量采集

    P1447能量采集 定义:(i,j)表示处于(i,j)的植物的贡献 我们发现,点(i,j)与(0,0)的连线所过整点的数目为\(\gcd(i,j)\) 发现要是想记录每个点的答案并不好算.那么怎么好算 ...

  6. 洛谷P1447 - [NOI2010]能量采集

    Portal Description 给出\(n,m(n,m\leq10^5),\)计算\[ \sum_{i=1}^n \sum_{j=1}^m (2gcd(i,j)-1)\] Solution 简单 ...

  7. 洛谷 P2158 [SDOI2008]仪仗队 && 洛谷 P1447 [NOI2010]能量采集

    https://www.luogu.org/problemnew/show/P2158 以人所在位置为(0,0)建立坐标系, 显然除了(0,1)和(1,0)外,可以只在坐标(x,y)的gcd(x,y) ...

  8. 洛谷P1447 [NOI2010]能量采集(容斥)

    传送门 很明显题目要求的东西可以写成$\sum_{i=1}^{n}\sum_{j=1}^m gcd(i,j)*2-1$(一点都不明显) 如果直接枚举肯定爆炸 那么我们设$f[i]$表示存在公因数$i$ ...

  9. 洛谷 P1447 [NOI2010]能量采集 (莫比乌斯反演)

    题意:问题可以转化成求$\sum_{i=1}^{n}\sum_{j=1}^{m}(2*gcd(i,j)-1)$ 将2和-1提出来可以得到:$2*\sum_{i=1}^{n}\sum_{j=1}^{m} ...

随机推荐

  1. 回顾 Flutter 2021 重要时刻,奉上虎年红包封面喜迎新年!

    2021 年,Flutter 正式进入 2.x 系列的正式版发布,年初的 Flutter 2 的发布 打开了一个新的"格局",为 Flutter 的加入了第五大特色--「可移植性」 ...

  2. 计算机电子书 2016 BiliDrive 备份

    下载方式 根据你的操作系统下载不同的 BiliDrive 二进制. 执行: bilidrive download <link> 链接 文档 链接 Go入门指南.epub (1.87 MB) ...

  3. DOM Document.readyState 属性

    感谢原文作者:MDN 原文地址:https://developer.mozilla.org/zh-CN/docs/Web/API/Document/readyState 描述 一个document 的 ...

  4. Linux添加用户组和添加用户

    1.用户组 添加组:groupadd 组名 [root@Server-n93yom ~]# groupadd dev [root@Server-n93yom ~]# cat /etc/group | ...

  5. drop、delete和truncate三者的区别

    相同点:1.truncate和不带where子句的delete.以及drop都会删除表内的数据.2.drop.truncate都是DDL语句(数据定义语言),执行后会自动提交.不同点:1. trunc ...

  6. 计算当前日期n天后的日期

    //计算180天后的日期//180*24*60*60*1000//更具时间戳计算n天前的日期 $(function () { var timestamp =Date.parse(new Date()) ...

  7. java链式创建json对象

    我们主要介绍一下:java中如何通过最简单的方式实现链式创建json对象,解决创建json代码臃肿的问题. 1.假设我们要创建一个json对象格式如下: { "code": 0, ...

  8. postman python疑难

    例子1:postman请求时会将默认的headers的content-type替换成Content-Type,而直接使用python的request则不行,服务器端就会接收到错误的Content-Ty ...

  9. 最全Java架构师130面试题:微服务、高并发、大数据、缓存等中间件

    一.数据结构与算法基础 · 说一下几种常见的排序算法和分别的复杂度. · 用Java写一个冒泡排序算法 · 描述一下链式存储结构. · 如何遍历一棵二叉树? · 倒排一个LinkedList. · 用 ...

  10. idea 自定义toString

    实现功能: 1.自定义json格式 2.字符及时间类型添加null判断 3.时间进行格式化 步骤: 1.alt+insert-----toString---setting----templates 2 ...