Descriprition

两种操作

  1. 把两个集合并起来
  2. 求一个集合中的第 \(k\) 大(的编号)

\(n \leq 10^5\)

Solution

平衡树的板子题之一

维护两个点连不连通直接并查集

考虑怎么把两个集合合并

启发式合并!即把 siz 小的那一颗平衡树每一个点暴力地加入到另一个

这样做的复杂度?对于每一个点,每一次合并之后集合大小都至少是原来的两边,所以每一个点都只会被合并 \(\log n\) 次。所以这样做是 \(O(n \log n)\) 的。

实现上的细节问题:

我用了 fhqtreap(大法好!)。启发式合并的过程(借鉴了题解区里另外一个dalao的fhqtreap)可以这么写:

inline void M(node *&r, node *p) { // p 合并到 r 中
if(!p) return ;
M(r, p->ch[0]); M(r, p->ch[1]); // 递归左子树和右子树
p->ch[0] = p->ch[1] = 0; // 把它左右子清空然后插到 r 里
insert(r, p);
}

Code

#include <bits/stdc++.h>

using namespace std;
const int N = 100100;
int n, m, fa[N];
struct node {
int d, id, siz, rnd;
node *ch[2];
inline void upd() {
int ret = 1;
if(ch[0]) ret += ch[0]->siz;
if(ch[1]) ret += ch[1]->siz;
siz = ret;
}
}pool[N], *cur = pool, *root[N];
inline int find(int x) {
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
inline int siz(node *p) {
if(p) return p->siz; return 0;
}
inline node *newnode(int d, int id) {
node *p = cur++; p->rnd = (rand() << 15) + rand();
p->siz = 1, p->d = d; p->id = id;
p->ch[0] = p->ch[1] = 0;
return p;
}
inline node *merge(node *p, node *q) {
if(!p) return q;
if(!q) return p;
if(p->rnd < q->rnd) { p->ch[1] = merge(p->ch[1], q); p->upd(); return p; }
if(p->rnd >= q->rnd) { q->ch[0] = merge(p, q->ch[0]); q->upd(); return q; }
}
inline void split(node *r, int k, node *&p, node *&q) {
if(!r) { p = q = 0; return ; }
if(siz(r->ch[0]) < k) p = r, split(r->ch[1], k - siz(r->ch[0]) - 1, r->ch[1], q);
else q = r, split(r->ch[0], k, p, r->ch[0]); r->upd();
}
inline int rk(node *r, int x) {
if(!r) return 0;
if(r->d >= x) return rk(r->ch[0], x);
else return rk(r->ch[1], x) + siz(r->ch[0]) + 1;
}
inline void insert(node *&r, node *x) {
node *p, *q; int k = rk(r, x->d);
split(r, k, p, q);
r = merge(merge(p, x), q);
}
inline void M(node *&r, node *p) { // p -> r
if(!p) return ;
M(r, p->ch[0]); M(r, p->ch[1]);
p->ch[0] = p->ch[1] = 0; p->upd(); insert(r, p);
}
inline node *Merge(node *p, node *q) {
if(p->siz <= q->siz) swap(p, q); M(p, q); return p;
}
/*
inline void out(node *p) {
if(p->ch[0]) out(p->ch[0]);
printf("%d ", p->d);
if(p->ch[1]) out(p->ch[1]);
}
*/
int main() {
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; i++) fa[i] = i;
for(int i = 1; i <= n; i++) {
int x; scanf("%d", &x);
root[i] = newnode(x, i);
} int q;
for(int i = 1; i <= m; i++) {
int u, v; scanf("%d %d", &u, &v);
int fu = find(u), fv = find(v);
if(fu == fv) continue ;
root[fu] = Merge(root[fu], root[fv]);
fa[fv] = fu;
}
scanf("%d", &q);
for(int i = 1; i <= q; i++) {
char op[5]; int x, y;
scanf("%s %d %d", op, &x, &y);
if(op[0] == 'B') {
int fx = find(x), fy = find(y);
if(fx == fy) continue ;
root[fx] = Merge(root[fx], root[fy]);
fa[fy] = fx;
} else {
int fx = find(x);
node *p, *q, *r;
if(siz(root[fx]) < y) {
printf("-1\n"); continue ;
}
split(root[fx], y - 1, p, q);
split(q, 1, q, r);
printf("%d\n", q->id);
root[fx] = merge(p, merge(q, r));
}
}
return 0;
}

题解【bzoj2733 [HNOI2012]永无乡】的更多相关文章

  1. bzoj2733: [HNOI2012]永无乡 启发式合并

    地址:http://www.lydsy.com/JudgeOnline/problem.php?id=2733 题目: 2733: [HNOI2012]永无乡 Time Limit: 10 Sec   ...

  2. bzoj2733: [HNOI2012]永无乡(splay)

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3778  Solved: 2020 Description 永 ...

  3. [Bzoj2733][Hnoi2012] 永无乡(BST)(Pb_ds tree)

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4108  Solved: 2195[Submit][Statu ...

  4. [bzoj2733][HNOI2012]永无乡_权值线段树_线段树合并

    永无乡 bzoj-2733 HNOI-2012 题目大意:题目链接. 注释:略. 想法: 它的查询操作非常友善,就是一个联通块内的$k$小值. 故此我们可以考虑每个联通块建一棵权值线段树. 这样的话每 ...

  5. bzoj2733: [HNOI2012]永无乡 线段树合并

    永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...

  6. BZOJ2733 [HNOI2012]永无乡 【线段树合并】

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  7. [BZOJ2733] [HNOI2012] 永无乡 (splay启发式合并)

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

  8. BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并

    题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...

  9. BZOJ2733: [HNOI2012]永无乡(线段树合并)

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

随机推荐

  1. hive-2.3.3安装

    1.下载hive-2.3.3 下载地址 http://archive.apache.org/dist/hive/hive-2.3.3 解压,编辑/etc/profile添加HIVE_HOME,保存文件 ...

  2. 进阶系列(10)—— C#元数据和动态编程

    一.元数据的介绍 元数据是用来描述数据的数据(Data that describes other data).单单这样说,不太好理解,我来举个例子.下面是契诃夫的小说<套中人>中的一段,描 ...

  3. VMware上配置DPDK环境并运行实例程序

    1. 在虚拟机VMware上配置环境 VMware安装:http://www.zdfans.com/html/5928.html Ubuntu:https://www.ubuntu.com/downl ...

  4. python learning OOP2.py

    class Student(object): pass s = Student() s.name = 'Chang' # 给一个实例动态绑定一个属性 print(s.name) def set_age ...

  5. Internet History, Technology and Security (Week8)

    Week 8 This week we start two weeks of Internet Security. It is a little technical but don't worry - ...

  6. 用原生JS实现多张图片上传及预览功能(兼容IE8)

    最近需要做一个图片上传预览的功能(兼容IE8-11.chrome.firefox等浏览器),网上现有的文件上传组件(如webuploader)总是会遇到一些兼容性问题.于是我参考了一些博文(链接找不到 ...

  7. 关于javascript异步编程的理解

    在开发手机app的时候,要使用ajax想向后台发送数据.然后遇到了一个bug,通过这个bug,理解了ajax异步请求的工作原理.下面是登录页面的源代码. <!DOCTYPE html> & ...

  8. 简单Window下 Android Studio的安装

    (1)首先安装JDK 下载JDK 本人觉得官方网站下JDK比较慢,可以直接百度JDK,(如果是64位 百度搜索记得+64位)

  9. 『编程题全队』Alpha 阶段冲刺博客Day1

    『编程题全队』Alpha 阶段冲刺博客Day1 一.Alpha 阶段全组总任务 二.各个成员在 Alpha 阶段认领的任务 三.明日各个成员的任务安排 孙志威:实现基本的网络连接, 完成燃尽图模块 孙 ...

  10. rpc 协议规范 之 rmi http webservice 和 一些框架

    RPC(Remote Procedure Call)是远程调用,是一种思想,也是一种协议规范.简单地说就是能使应用像调用本地方法一样的调用远程的过程或服务,可以应用在分布式服务.分布式计算.远程服务调 ...