题目链接

\(Description\)

给定一个无向带权连通图,每条边是黑色或白色。求一棵最小权的恰好有K条白边的生成树。

\(Solution\)

Kruskal是选取最小的n-1条边。而白边数有限制,考虑为其设额外边权C。

随着C增大,选的白边数应是不增的。可以二分求一个C值使得此时恰好选择K条边。选取时应优先选白边,因为多了还可以用黑边替换,少了只能减少C。

可能的问题是,C=mid时白边数>K,C=mid+1时白边数<K,因为有很多黑边与+mid后的白边权值想等。可以用这些黑边替换掉多余的白边,所以答案应是减K*mid(保留黑边)。

//404ms	3.36MB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 100000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=5e4+5,M=1e5+5; int n,m,K,fa[N],Ans;
char IN[MAXIN],*SS=IN,*TT=IN;
int read();
struct Edge
{
int fr,to,val,col;
inline void Init(){
fr=read()+1, to=read()+1, val=read(), col=read();
}
bool operator <(const Edge &x)const{
return val==x.val?col<x.col:val<x.val;
}
}e[M]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int GetFa(int x){
return x==fa[x]?x:fa[x]=GetFa(fa[x]);
}
bool Check(int x)
{
for(int i=1; i<=m; ++i) if(!e[i].col) e[i].val+=x;
for(int i=1; i<=n; ++i) fa[i]=i;
std::sort(e+1,e+1+m);
int sum=0, cnt=0;
for(int i=1,k=0,r1,r2; i<=m; ++i)
{
if((r1=GetFa(e[i].fr))==(r2=GetFa(e[i].to))) continue;
fa[r1]=r2, sum+=e[i].val;
cnt+=e[i].col^1;
if(++k+1==n) break;
}
for(int i=1; i<=m; ++i) if(!e[i].col) e[i].val-=x;
if(cnt<K) return 0;
Ans = sum-K*x;//不能取min!
return 1;
} int main()
{
n=read(),m=read(),K=read();
for(int i=1; i<=m; ++i) e[i].Init();
Ans=m*101; int l=-101,r=101,mid;
while(l<=r)//l==r时要Check一遍(或者结束时)
if(Check(mid=l+r>>1)) l=mid+1;
else r=mid-1;
// Check(l);
printf("%d",Ans); return 0;
}

洛谷.2619.[国家集训队2]Tree I(带权二分 Kruskal)的更多相关文章

  1. 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)

    洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...

  2. 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)

    洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...

  3. P2619 [国家集训队2]Tree I(最小生成树+二分)

    P2619 [国家集训队2]Tree I 每次二分一个$x$,每条白边加上$x$,跑最小生成树 统计一下满足条件的最小值就好了. to me:注意二分不要写挂 #include<iostream ...

  4. 洛谷 P1501 [国家集训队]Tree II 解题报告

    P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...

  5. 洛谷P1501 [国家集训队]Tree II(LCT,Splay)

    洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2...... ...

  6. [洛谷P1527] [国家集训队]矩阵乘法

    洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...

  7. 洛谷 P1505 [国家集训队]旅游 树链剖分

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 思路 AC代码 总结 题面 题目链接 P1505 [国家集训队]旅游 题目描述 Ray 乐 ...

  8. 洛谷 P1407 [国家集训队]稳定婚姻 解题报告

    P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...

  9. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

随机推荐

  1. css3新增的属性

    由于CSS5标准还未完全订下来,所以各种内核的浏览器都有自己的标准,为了不使属性混淆,所以各家在各自标准前加了一个前缀, 如:-moz-       firefox火狐 -ms-         IE ...

  2. .NET中如何自定义配置节点

    .NET Framework在web.config或app.config中默认提供了很多种设置,以便能够改变应用程序内嵌组件的行为,例如<connectionStrings>.<ht ...

  3. shell脚本实现分日志级别输出

    shell脚本如何优雅的记录日志信息,下面让我们一步一步,让shell脚本的日志也变得高端起来,实现如下功能 ①设定日志级别,实现可以输出不同级别的日志信息,方便调试 ②日志格式类似为:[日志级别] ...

  4. linux下使用indent整理代码(代码格式化)【转】

    转自:https://blog.csdn.net/jiangjingui2011/article/details/7197069 常用的设置: indent -npro -kr -i8 -ts8 -s ...

  5. scrapy shell命令的【选项】简介

    在使用scrapy shell测试某网站时,其返回400 Bad Request,那么,更改User-Agent请求头信息再试. DEBUG: Crawled () <GET https://w ...

  6. csslint在前端项目中的使用

    大家都听说过jslint,eslint,不过你可能没见过csslint,你可能会问csslint有什么用,为什么今天要说csslint,是因为我在开发中遇到一个坑,其实之前不怎么使用csslint的, ...

  7. 【转】shell命令中>/dev/null 2>&1的实现原理

    异步执行 exec("/alidata/server/php/bin/php /nas/wxdoctor/index.php App/Common/WordsPic/user_id/&quo ...

  8. ioctl()函数获取本机IP、MAC

    #include <sys/ioctl.h> int ioctl(int d, int request, ...); /* Socket configuration controls. * ...

  9. 洛谷P3366最小生成树

    传送门啦 #include <iostream> #include <cstdio> #include <cstring> #include <algorit ...

  10. Codeforces 981D Bookshelves(按位贪心+二维DP)

    题目链接:http://codeforces.com/contest/981/problem/D 题目大意:给你n本书以及每本书的价值,现在让你把n本书放到k个书架上(只有连续的几本书可以放到一个书架 ...