【洛谷】【堆】P1168 中位数
【题目描述:】
给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数。即前1,3,5,……个数的中位数。
【输入格式:】
输入文件median.in的第1行为一个正整数N,表示了序列长度。
第2行包含N个非负整数A[i] (A[i] ≤ 10^9)。
【输出格式:】
输出文件median.out包含(N + 1) / 2行,第i行为A[1], A[3], …, A[2i – 1]的中位数。
输入样例#: 输出样例#:
输入输出样例
【算法分析:】
开一个大根堆一个小根堆,
小根堆里放大数,大根堆里放小数,保证两个堆的大小差值小于等于1
这样最后元素个数多的堆的堆顶就是中位数。
读入数列a,把a1 push进大根堆
对于a中的每一个数:
如果比大根堆的堆顶大就放进小根堆
否则放进大根堆
为了保证两个堆中的元素个数相差小于等于1:
不停地把元素多的堆的堆顶push到元素少的堆里去
最后元素多的堆的堆顶便是数列的中位数
【代码:】
1 //中位数
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std; const int MAXN = + ; int n, a[MAXN];
priority_queue<int> q1;
priority_queue<int, vector<int>, greater<int> > q2; int main() {
scanf("%d", &n);
for(int i = ; i <= n; i++) scanf("%d", &a[i]);
q1.push(a[]);
printf("%d\n", a[]);
for(int i = ; i <= n; i++) {
if(a[i] > q1.top()) q2.push(a[i]);
else q1.push(a[i]);
while(abs(q1.size() - q2.size()) > ) {
if(q1.size() > q2.size()) q2.push(q1.top()), q1.pop();
else q1.push(q2.top()), q2.pop();
}
if(i & ) {
if(q1.size() > q2.size()) printf("%d\n", q1.top());
else printf("%d\n", q2.top());
}
}
}
【洛谷】【堆】P1168 中位数的更多相关文章
- 洛谷 P3871 [TJOI2010]中位数 解题报告
P3871 [TJOI2010]中位数 题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前 ...
- 洛谷——P3871 [TJOI2010]中位数
P3871 [TJOI2010]中位数 一眼秒掉,这不是splay水题吗,套模板 #include<bits/stdc++.h> #define IL inline #define N 1 ...
- 洛谷3871 [TJOI2010]中位数 维护队列的中位数
题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前序列的中位数 中位数是指将一个序列按照从 ...
- 堆--P1168 中位数
题目描述 给出一个长度为N的非负整数序列Ai,对于所有1≤k≤(N+1)/2,输出A1,A3,…,A2k−1的中位数.即前1,3,5,…个数的中位数. 输入格式 第1行为一个正整数N,表示了序列长度 ...
- 洛谷 P1627 [CQOI2009]中位数 解题报告
P1627 [CQOI2009]中位数 题目描述 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 输入输出格式 输入格式 ...
- 洛谷P3871 [TJOI2010]中位数(splay)
题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前序列的中位数 中位数是指将一个序列按照从 ...
- 洛谷——P1627 [CQOI2009]中位数
P1627 [CQOI2009]中位数 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 中位数的题目有关统计的话,可以转 ...
- 洛谷 3871 [TJOI2010]中位数
[题解] 平衡树模板题,不过因为可以离线,所以有别的做法.把询问倒着做,变成删掉数字.求中位数,于是可以二分+树状数组. #include<cstdio> #include<cstr ...
- 洛谷——P1168 中位数
P1168 中位数 题目描述 给出一个长度为NN的非负整数序列$A_i$,对于所有1 ≤ k ≤ (N + 1),输出$A_1, A_3, …, A_{2k - 1}A1,A3,…,A2k−1 ...
- 洛谷 P3377 【模板】左偏树(可并堆)
洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...
随机推荐
- Android - Builder模式
https://github.com/simple-android-framework-exchange/android_design_patterns_analysis/tree/master/bu ...
- HTML5 FormData实现文件上传实例
表单提交,文件上传是一个常用又十分麻烦的功能,以前要上传文件通常都是借助插件或者flash来实现,噼里啪啦的加载一大堆东西.自从有了HTML5的FormData后,老板再也不用担心我的上传了. For ...
- 2017年值得学习的3个CSS特性
原文:https://bitsofco.de/3-new-css-features-to-learn-in-2017/译文:http://caibaojian.com/3-new-css-featur ...
- Docker for Windows(五)实践搭建SqlServer服务&执行数据库操作
上一篇我们已经搭建了一个mysql数据库服务了:Docker for Windows(四)实践搭建&删除MySQL服务,发现用Docker确实是方便且容易,但上一篇主要是服务的搭建删除等基础操 ...
- css固定广告栏
<div style="position: fixed; left: 50%; top: 100px; margin-left: -621px;"> <div&g ...
- 使用IntelliJ IDEA配置Erlang开发环境
这篇文章比较详细,感谢作者,拷贝过来做个记录 ————————————————————————————————————————————————————————————————————————————— ...
- spring <context:annotation-config/> 注解作用
<context:component-scan>包含<context:annotation-config/>的作用 <context:annotation-config/ ...
- @transient加在属性前的作用
我们都知道一个对象只要实现了Serilizable接口,这个对象就可以被序列化,java的这种序列化模式为开发者提供了很多便利,我们可以不必关系具体序列化的过程,只要这个类实现了Serilizable ...
- 【Java】数组使用
package aaa; public class aaa { public static void main(String args[]) { int a[]={1,2,3,4}; for(int ...
- 数据可视化d3.v4.js
<html> <head> <meta charset="utf-8"> <title>做一个简单的条形图</title> ...