Farmer John's family pitches in with the chores during milking, doing all the chores as quickly as possible. At FJ's house, some chores cannot be started until others have been completed, e.g., it is impossible to wash the cows until they are in the stalls.

Farmer John has a list of N (3 <= N <= 10,000) chores that must be completed. Each chore requires an integer time (1 <= length of time <= 100) to complete and there may be other chores that must be completed before this chore is started. We will call these prerequisite chores. At least one chore has no prerequisite: the very first one, number 1. Farmer John's list of chores is nicely ordered, and chore K (K > 1) can have only chores 1,.K-1 as prerequisites. Write a program that reads a list of chores from 1 to N with associated times and all perquisite chores. Now calculate the shortest time it will take to complete all N chores. Of course, chores that do not depend on each other can be performed simultaneously.

Input

* Line 1: One integer, N

* Lines 2..N+1: N lines, each with several space-separated integers. Line 2 contains chore 1; line 3 contains chore 2, and so on. Each line contains the length of time to complete the chore, the number of the prerequisites, Pi, (0 <= Pi <= 100), and the Pi prerequisites (range 1..N, of course).

Output

A single line with an integer which is the least amount of time required to perform all the chores. 

Sample Input

7
5 0
1 1 1
3 1 2
6 1 1
1 2 2 4
8 2 2 4
4 3 3 5 6

Sample Output

23

Hint

[Here is one task schedule:

Chore 1 starts at time 0, ends at time 5.

Chore 2 starts at time 5, ends at time 6.

Chore 3 starts at time 6, ends at time 9.

Chore 4 starts at time 5, ends at time 11.

Chore 5 starts at time 11, ends at time 12.

Chore 6 starts at time 11, ends at time 19.

Chore 7 starts at time 19, ends at time 23.

]
题解:树形DP入门题。从根节点往下依次更新出每一个节点的最短时间,则该最短时间的最大值即为:完成家务的最短时间。
参考代码为:
#include <iostream>
#include <cstring>
using namespace std;
const int maxn=10005;
int c[maxn],n[maxn],dp[maxn]; int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int N,temp,sum=-maxn;
memset(dp,0,sizeof dp);
cin>>N;
for(int i=1;i<=N;i++)
{
cin>>c[i]>>n[i];
if(i==1) dp[i]=c[i];
else
{
int max=-maxn;
if(n[i]==0) dp[i]=c[i];
else
{
for(int j=0;j<n[i];j++)
{
cin>>temp;
if(dp[temp]>max) max=dp[temp];
}
dp[i]=max+c[i];
}
}
if(dp[i]>sum) sum=dp[i];
}
cout<<sum<<endl;
return 0;
} /*
7
5 0
1 1 1
3 1 2
6 1 1
1 2 2 4
8 2 2 4
4 3 3 5 6
*/

  

POJ 1949 Chores的更多相关文章

  1. POJ 1949 Chores (很难想到的dp)

    传送门: http://poj.org/problem?id=1949 Chores Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

  2. poj 1949 Chores 最长路

    题目链接 求出最长路..... #include <iostream> #include <vector> #include <cstdio> #include & ...

  3. POJ 1949 Chores(DAG上的最长路 , DP)

    题意: 给定n项任务, 每项任务的完成用时t和完成每项任务前需要的k项任务, 求把所有任务完成的最短时间,有当前时间多项任务都可完成, 那么可以同时进行. 分析: 这题关键就是每项任务都会有先决条件, ...

  4. POJ 1949 DP?

    题意: 有n个家务,第i个家务需要一定时间来完成,并且第i个任务必须在它 "前面的" 某些任务完成之后才能开始. 给你任务信息,问你最短需要多少时间来完成任务. 输入: 第一行n个 ...

  5. poj 动态规划题目列表及总结

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  6. poj动态规划列表

    [1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...

  7. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  8. POJ 动态规划题目列表

    ]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...

  9. poj 动态规划的主题列表和总结

    此文转载别人,希望自己可以做完这些题目. 1.POJ动态规划题目列表 easy:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, ...

随机推荐

  1. 去重算法,简单粗暴&优化版

    Remove Repeat 一.去重原理 1.进行排序 2.判断是否满足 '两个字符串相同' 的条件,相同则累加重复次数,并使用continue继续下一次循环 3.当条件不满足时,将该字符串和累计数加 ...

  2. docker初解

    1 什么是容器 容器就是在隔离的环境中运行的一个进程,如果进程停止,容器就会退出. 隔离的环境拥有自己的系统文件,ip地址,主机名等 容器是一种软件打包技术 程序:代码,命令进程:正在运行的程序容器的 ...

  3. tensorflow中的学习率调整策略

    通常为了模型能更好的收敛,随着训练的进行,希望能够减小学习率,以使得模型能够更好地收敛,找到loss最低的那个点. tensorflow中提供了多种学习率的调整方式.在https://www.tens ...

  4. [多态] java笔记之多态性

    1.多态,说的是对象,说的不是类. 2. 3.多态 = polymorphism 4. 调用如下: 5. 6.口诀: 7.对象的向上转型: 8.对象的向下转型: 9.下面这个异常叫做ClassCast ...

  5. 微信web协议,群成员唯一uin,获取群成员唯一标识

    群成员唯一标识获取接口 全网最新,支持调试测试.觉得OK再付款! 800元出售源码 不讲价 联系QQ:2052404477

  6. 021.掌握Pod-Pod调度策略

    一 Pod生命周期管理 1.1 Pod生命周期 Pod在整个生命周期过程中被系统定义了如下各种状态. 状态值 描述 Pending API Server已经创建该Pod,且Pod内还有一个或多个容器的 ...

  7. Centos7下oracle12c的安装与配置(详细)

    一.硬件配置 CentOS7@VMware® Workstation 15 Pro,分配资源:CPU:2颗,内存:4GB,硬盘空间:30GB 二.软件准备  linux.x64_11gR2_datab ...

  8. Alibaba Nacos 学习(三):Spring Cloud Nacos Discovery - FeignClient,Nacos 服务注册与发现

    Alibaba Nacos 学习(一):Nacos介绍与安装 Alibaba Nacos 学习(二):Spring Cloud Nacos Config Alibaba Nacos 学习(三):Spr ...

  9. Nmap强大在哪之主机发现

    1.概述 博主前段时间刚入坑渗透测试,随着学习的深入,越来越发现Nmap简直无所不能.今天先从主机发现功能入手分析. 2.Nmap主机发现 nmap --help #nmap帮助 3.参数分析 3.1 ...

  10. DexOpt相关的异常

    查找的资料 dvm探讨之odex绕过 DexClassLoader4.4.2动态加载分析(磁盘加载分析) - ::): DexOpt: incorrect opt magic number (0xff ...