ElasticSearch核心概念和文档的CRUD
本文所有命令均在 Kibana 的 dev tools 上进行
1. 基本概念
1.1 Node 与 Cluster
Elastic 本质上是一个分布式数据库,允许多台服务器协同工作,每台服务器可以运行多个 Elastic 实例。单个 Elastic 实例称为一个节点(node)。一组节点构成一个集群(cluster)。
1.2 Index
Elastic 会索引所有字段,经过处理后写入一个反向索引(Inverted Index)。查找数据的时候,直接查找该索引。所以,Elastic 数据管理的顶层单位就叫做 Index(索引)。它是单个数据库的同义词。每个 Index (即数据库)的名字必须是小写。
事实上,我们的数据被存储在分片(shards)中,索引只是一个把一个或多个分片分组在一起的逻辑空间。然而,这只是一些内部细节——我们的程序完全不用关心分片。对于我们的程序而言,文档存储在索引(index)中。剩下的细节由Elasticsearch关心既可。
可以使用如下命令,查询本节点下的所有索引
#查询所有索引
GET _cat/indices?v
可以得到以下结果
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open idx5 Tzjr1CmGRlCOjZUyQ0QUhA 3 0 2 0 8.5kb 8.5kb
yellow open idx4 z7zw83L9Tjyc1Fx7jb6l0A 1 1 3 1 11.8kb 11.8kb
green open idx2 7SSk77DkTN-VpUuXehgaDQ 3 0 7 2 27.2kb 27.2kb
yellow open idx1 1bqxLckjSk-BZtERVNhPZQ 1 1 0 0 283b 283b
green open idx3 qc32ybYBT869QIPaYmcWGQ 3 0 0 0 849b 849b
你可能还注意到客户索引标记了黄色运行状况。黄色表示某些副本尚未分配。 此索引发生这种情况的原因是因为默认情况下Elasticsearch为此索引创建了一个副本。 由于我们目前只有一个节点在运行,因此在另一个节点加入集群的稍后时间点之前,尚无法分配一个副本(用于高可用性)。 将该副本分配到第二个节点后,此索引的运行状况将变为绿色。
创建索引(使用默认的设置)
PUT idx1/
创建索引同时指定节点的复制和分片数量
PUT idx2/
{
"settings": {
"index": {
"number_of_shards" : "3",
"number_of_replicas" : "0"
}
}
}
查询索引的基本信息
GET idx2/
获取所有索引的设置
GET _all/_settings
删除索引
DELETE idx3/
1.3 Document
Index 里面单条的记录称为 Document(文档)。许多条 Document 构成了一个 Index。
Document 使用 JSON 格式表示,下面是一个例子。
{
"_index" : "idx2",
"_type" : "_doc",
"_id" : "1",
"_version" : 5,
"_seq_no" : 5,
"_primary_term" : 1,
"found" : true,
"_source" : {
"name" : "BiologyBook2.0",
"price" : 100.0
}
}
同一个 Index 里面的 Document,不要求有相同的结构(scheme),但是最好保持相同,这样有利于提高搜索效率。但是在 es6.0 后续版本中废除了 type,推荐所有的 Document 均默认使用 _doc 类型。
1.4 Type(将在ES6.0移除)
Document 可以分组,比如weather这个 Index 里面,可以按城市分组(北京和上海),也可以按气候分组(晴天和雨天)。这种分组就叫做 Type,它是虚拟的逻辑分组,用来过滤 Document。
2. 数据的增删改查
2.1 添加数据
在 es7.x 之后取消了 type,均使用_doc同一文档类型,想必之后版本连_doc也会被取消。
向指定的 /Index/Type 发送 PUT 请求,就可以在 Index 里面新增一条记录。比如,向/idx1/_doc发送请求,就可以新增一条人员记录。
POST /idx4/_doc/
{
"name" : "anqi1.0",
"age" : 20
}
我们会得到如下 json 结果,其中_id为该记录id,如果没指定的话 es 会帮我生成这种随机id,result为我们执行的操作,_index为所属索引
{
"_index" : "idx4",
"_type" : "_doc",
"_id" : "0u8pvGsB-aEEelT0MVgW",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 1,
"_primary_term" : 1
}
我们也可以指定生成的id,这样的话得到的_id就为我们指定的数字1
POST /idx4/_doc/1
{
"name" : "anqi1.0",
"age" : 20
}
我们如果对不存在的文档执行更新操作,则会新增一条数据,
PUT /idx4/_doc/2
{
"age" : 33
}
得到如下结果,当然我们不提倡统一索引下存放结构不一样的数据。(因为只有一个 age 属性)
{
"_index" : "idx4",
"_type" : "_doc",
"_id" : "2",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 3,
"_primary_term" : 1
}
2.2 查询数据
根据id获取文档
GET /idx5/_doc/1
使用如下命令查询 idx5 索引下所有数据
GET /idx5/_search
得到如下结果, _source即为插入的数据
{
"took" : 353,
"timed_out" : false,
"_shards" : {
"total" : 3,
"successful" : 3,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {"value" : 2,"relation" : "eq"},
"max_score" : 1.0,
"hits" : [
{
"_index" : "idx5",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"city" : "Yuanping",
"email" : "123@qq.com"
}
},
{
"_index" : "idx5",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"city" : "Xinzhou",
"email" : "abc@qq.com"
}
}
]
}
}
上面代码中,返回结果的 took字段表示该操作的耗时(单位为毫秒),timed_out字段表示是否超时,hits字段表示命中的记录,里面子字段的含义如下。
total:返回记录数,本例是2条。max_score:最高的匹配程度,本例是1.0。hits:返回的记录组成的数组。
返回的记录中,每条记录都有一个_score字段,表示匹配的程序,默认是按照这个字段降序排列。
2.3 更新数据
更新数据就是发送 PUT请求,我们这里将id为1的数据中age属性更新为 22
PUT /idx4/_doc/1
{
"age" : 22
}
更新后我们得到了以下结果
{
"_index" : "idx4",
"_type" : "_doc",
"_id" : "1",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 2,
"_primary_term" : 1
}
可以看到,记录的 Id 没变,但是版本(version)从1变成2,操作类型(result)从created变成updated,因为这次不是新建记录
Elasticsearch是一个分布式系统。当documents被创建、更新或者删除,其新版本会被复制到集群的其它节点。Elasticsearch既是异步的(asynchronous )也是同步的(concurrent),其含义是复制请求都是并行发送的,但是到达目的地的顺序是无序的。Elasticsearch系统需要一种方法使得老版本的文档永远都无法覆盖新的版本。
每当文档被改变的时候,文档中的
_version将会被增加(+1)。Elasticsearch使用_version确保所有的修改都会按照正确的顺序执行。如果文档旧的版本在新的版本之后到达,它会被简单的忽略。
2.4 删除数据
删除数据就是发送 DELETE 请求
DELETE /idx4/_doc/1
ElasticSearch核心概念和文档的CRUD的更多相关文章
- Elasticsearch入门教程(二):Elasticsearch核心概念
原文:Elasticsearch入门教程(二):Elasticsearch核心概念 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:ht ...
- ElasticSearch 核心概念
ElasticSearch核心概念-Cluster ElasticSearch核心概念-shards ElasticSearch核心概念-replicas ElasticSearch核心概念-reco ...
- ElasticSearch 全文检索— ElasticSearch 核心概念
ElasticSearch核心概念-Cluster 1)代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的.es的一个概念就是去中心化,字 ...
- Elasticsearch核心概念
Elasticsearch 核心概念 Cluster 代表一个集群, 集群中有多个节点, 其中一个为主节点, 该节点可以通过选举产生.(主从节点只针对于集群内部) 去中心化: 对于集群外来说无中心节点 ...
- 剖析ElasticSearch核心概念,NRT,索引,分片,副本等
ElasticSearch 的核心概念 Near RealTime(NRT) 近实时 近实时有两种意思,一种是从写入数据到可以被搜索到有一个小延迟(大概一秒),还有一种就是基于ElasticSearc ...
- Elasticsearch学习之基本核心概念
在Elasticsearch中有许多术语和概念 1. 核心概念 Elasticsearch集群可以包含多个索引(indices)(数据库),每一个索引可以包含多个类型(types)(表),每一个类型包 ...
- ElasticSearch(二)核心概念
elasticsearch核心概念 (1)Near Realtime(NRT):近实时,两个意思,从写入数据到数据可以被搜索到有一个小延迟(大概1秒):基于es执行搜索和分析可以达到秒级 (2)Clu ...
- 第三百六十二节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)基本的索引和文档CRUD操作、增、删、改、查
第三百六十二节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)基本的索引和文档CRUD操作.增.删.改.查 elasticsearch(搜索引擎)基本的索引 ...
- 四十一 Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)基本的索引和文档CRUD操作、增、删、改、查
elasticsearch(搜索引擎)基本的索引和文档CRUD操作 也就是基本的索引和文档.增.删.改.查.操作 注意:以下操作都是在kibana里操作的 elasticsearch(搜索引擎)都是基 ...
随机推荐
- 关于JSP
JSP的本质 JSP本质上就是Servlet, 正常情况下, 它会在第一次被访问的时候被容器转化成Java代码, 然后再从Java代码编译成.class文件, 之后实际就和Servlet没区别了, 也 ...
- WPF依赖项属性不需要包装属性也可以工作
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...
- Redis 一些高级用法
延迟消息队列 利用 expire keyspace notification Redis 过期时,会向特定的消息队列发送消息,监听该消息队列 在 redis.conf 修改 notify-keyspa ...
- LeetCode - 4 - Longest Substring Without Repeating Characters
题目 URL:https://leetcode.com/problems/median-of-two-sorted-arrays/ 解法 二分法. 总的思想是将 2 个数组用 2 个指针“整体”二分. ...
- IE的BHO通过IHTMLDocument2接口获得网页源代码
参考了凤之焚的专栏:http://blog.csdn.net/lion_wing/article/details/769742 但是他的源码有些问题,即IHTMLElementCollection接口 ...
- 使用xargs同步文本中单词出现个数
#!/bin/bash # 分析一个文本文件中单词出现的频率. # 使用 'xargs' 将文本行分解为单词. # 检查命令行上输入的文件. ARGS= E_BADARGS= E_NOFILE= if ...
- 关于VS编译DevExpress默认产生几个多余的语言包的问题解决
原文 关于VS编译DevExpress默认产生几个多余的语言包的问题解决 VS15开始对于非系统的Dll都会默认复制到本地,即bin\debug下面,复制dll到本地好处在于发布的时候不用再去寻找相关 ...
- 使用Advanced Installer 13.1打包发布 Windows Service服务程序
原文: 使用Advanced Installer 13.1打包发布 Windows Service服务程序 项目中需要用到一个定时推送案件状态的需求,本人小菜一只,在同事建议下要写成一个windows ...
- storm(一)
Storm 一个用来实时计算的流框架,具有高可用,低延迟,数据不丢失,分布式的特点 storm 处理数据的方式是基于消息的流水线处理,因此特别适合无状态的计算,也就是说计算单元依赖的数据全部在接受的消 ...
- 给 Web 开发人员推荐的通用独立 UI 组件(二)
现代 Web 开发在将体验和功能做到极致的同时,对于美观的追求也越来越高.在推荐完图形库之后,再来推荐一些精品的独立 UI 组件.这些组件可组合在一起,形成美观而交互强大的 Web UI . 给 We ...