HDU 1848 Fibonacci again and again SG函数做博弈
题意:
有三堆石子,双方轮流从某堆石子中去f个石子,直到不能取,问先手是否必胜,其中f为斐波那契数。
思路:
利用SG函数求解即可。
/*
* @Author: chenkexing
* @Date: 2019-01-13 16:17:46
* @Last Modified by: chenkexing
* @Last Modified time: 2019-01-15 11:10:33
*/ #include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/*-----------------------showtime----------------------*/
const int maxn = ;
ll f[];
int sg[maxn],s[maxn]; void getSG(int n){ for(int i=; i<=n; i++){
memset(s,,sizeof(s));
for(int j=; f[j] <= i && j<=; j++){
s[sg[i-f[j]]] = ;
}
for(int j=; ; j++) if(!s[j]){
sg[i] = j;
break;
}
}
}
int main(){
f[] = ;f[] = ;
for(int i=; i<=; i++) f[i] = f[i-] + f[i-];
getSG();
int a,b,c;
while(~scanf("%d%d%d", &a, &b, &c) && a+b+c){
if(sg[a] ^ sg[b] ^ sg[c]) puts("Fibo");
else puts("Nacci");
}
return ;
}
HDU 1848 Fibonacci again and again SG函数做博弈的更多相关文章
- HDU 1848 Fibonacci again and again(SG函数)
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...
- 题解报告:hdu 1848 Fibonacci again and again(尼姆博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1848 Problem Description 任何一个大学生对菲波那契数列(Fibonacci num ...
- gym/102059/problem/I. Game on Plane SG函数做博弈
传送门: 题意: 给定一个正n边形的点.双方轮流连点成线,要求所画的线不能与之前的线相交.当某个人连成一个回路,这个人就输了.问先手必胜还是后手必胜. 思路: SG函数,因为一条线相当于把图劈成了两半 ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- hdu 1848 Fibonacci again and again(SG函数)
Fibonacci again and again HDU - 1848 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)= ...
- HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)
Fibonacci again and again Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & ...
- HDU 1848 Fibonacci again and again【SG函数】
对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...
- hdu 1848 Fibonacci again and again (初写SG函数,详解)
思路: SG函数的应用,可取的值为不连续的固定值,可用GetSG求出SG,然后三堆数异或. SG函数相关注释见代码: 相关详细说明请结合前一篇博客: #include<stdio.h> # ...
- HDU 1848 Fibonacci again and again(SG函数入门)题解
思路:SG打表 参考:SG函数和SG定理[详解] 代码: #include<queue> #include<cstring> #include<set> #incl ...
随机推荐
- DotSpatial安装、类库引用方法
解决VS工具栏添加DotSpatial后,控件不全问题. 注意注意注意:不要使用Nuget安装DotSpatial!!! 我在Nuget上把所有DotSpatial的版本都安装了一遍,都缺少控件,然后 ...
- 今天代码中接触到了一个新的东西。js的上下自动滚动,无缝对接。
js的上下自动滚动,无缝对接.为什么会用到这个东西呢?因为我在做公司的官网项目的修改的时候.有一个产品介绍的页面,会有很多的产品出现在,中间部分的列表里.但是又不能够使用分页.所以我就在想如果,列表数 ...
- Golang高效实践之array、slice、map
前言 Golang的slice类型为连续同类型数据提供了一个方便并且高效的实现方式.slice的实现是基于array,slice和map一样是类似于指针语义,传递slice和map并不涉及底层数据结构 ...
- egg-sequelize-ts 插件
egg-sequelize-ts plugin 目的 (Purpose) 能让使用 typescript 编写的 egg.js 项目中能够使用 sequelize方法,并同时得到egg.js所赋予的功 ...
- Spring Boot 支持 Https 有那么难吗?
https 现在已经越来越普及了,特别是做一些小程序或者公众号开发的时候,https 基本上都是刚需了. 不过一个 https 证书还是挺费钱的,个人开发者可以在各个云服务提供商那里申请一个免费的证书 ...
- Consul的反熵
熵 熵是衡量某个体系中事物混乱程度的一个指标,是从热力学第二定律借鉴过来的. 熵增原理 孤立系统的熵永不自动减少,熵在可逆过程中不变,在不可逆过程中增加.熵增加原理是热力学第二定律的又一种表述,它更为 ...
- 洛谷 P2572 [SCOI2010]序列操作
题意简述 维护一个序列,支持如下操作 把[a, b]区间内的所有数全变成0 把[a, b]区间内的所有数全变成1 把[a,b]区间内所有的0变成1,所有的1变成0 询问[a, b]区间内总共有多少个1 ...
- vs2013 在按F5调试时,总是提示 “项目已经过期”的解决方案
这个是由于缺少某些文件(如.h,xxx.icon),或者文件时间不对 引起的. 如图在工具选项设置 最小为 “诊断”. 然后编译一下,会提示 xxx过期,确认下即可.
- java后端_百度一面
参考: https://www.nowcoder.com/discuss/215891?type=2&order=0&pos=10&page=1 1.会啥框架.不会. 2.锁的 ...
- 记忆化搜索模板题---leetcode 1155. 掷骰子的N种方法
1155. 掷骰子的N种方法 这里有 d 个一样的骰子,每个骰子上都有 f 个面,分别标号为 1, 2, ..., f. 我们约定:掷骰子的得到总点数为各骰子面朝上的数字的总和. 如果需要掷出的总点数 ...