先初始化数据

import pandas as pd
import numpy as np
index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name")
data = {
"age": [18, 30, np.nan, 40, np.nan, 30],
"city": ["Bei Jing", "Shang Hai", "Guang Zhou", "Shen Zhen", np.nan, " "],
"sex": [None, "male", "female", "male", np.nan, "unknown"],
"birth": ["2000-02-10", "1988-10-17", None, "1978-08-08", np.nan, "1988-10-17"]
}
user_info = pd.DataFrame(data=data, index=index)
user_info["birth"] = pd.to_datetime(user_info.birth)
user_info

为什么要用str属性

  文本数据也就是我们常说的字符串,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。在之前已经了解过,在对 Series 中每个元素处理时,我们可以使用 map 或 apply 方法。

# 将每个城市都转为小写:
user_info.city.map(lambda x: x.lower())

  What?竟然出错了,错误原因是因为 float 类型的对象没有 lower 属性。这是因为缺失值 (np.nan)属于float 类型

  这时候我们的  str  属性操作来了,来看看如何使用吧

# 将文本转为小写
user_info.city.str.lower()
# 统计每个字符串的长度
user_info.city.str.len()

替换和分割

替换操作

# 将空字符串替换成下划线:
user_info.city.str.replace(" ", "_")
# 使用正则表达式将所有开头为 S 的城市替换为空字符串:
user_info.city.str.replace("^S.*", " ")

分割操作

# 根据空字符串来分割某一列:
user_info.city.str.split(" ")
"""
name
Tom [Bei, Jing]
Bob [Shang, Hai]
Mary [Guang, Zhou]
James [Shen, Zhen]
Andy NaN
Alice [, ]
Name: city, dtype: object
""" #分割列表中的元素可以使用 get 或 [] 符号进行访问:
user_info.city.str.split(" ").str.get(0)
"""
name
Tom Bei
Bob Shang
Mary Guang
James Shen
Andy NaN
Alice
Name: city, dtype: object
""" user_info.city.str.split(" ").str[1]
"""
name
Tom Jing
Bob Hai
Mary Zhou
James Zhen
Andy NaN
Alice
Name: city, dtype: object
""" # 设置参数 expand=True 可以轻松扩展此项以返回 DataFrame
user_info.city.str.split(" ", expand=True)
"""
    0    1
name
Tom Bei Jing
Bob Shang Hai
Mary Guang Zhou
James Shen Zhen
Andy NaN NaN
Alice
"""

提取子串

  从一个长的字符串中提取出子串。

提取第一个匹配的子串

  extract 只能够匹配出第一个子串,extract 方法接受一个正则表达式并至少包含一个捕获组,指定参数 expand=True 可以保证每次都返回 DataFrame。

  \s+ :一个或多个空字符串 
  (\w+):分组捕获任意多个字符 
  (\w+)\s+:在一个或多个空字符串前,分组捕获任意多个字符

# 匹配空字符串前面的所有的字母
user_info.city.str.extract("(\w+)\s+", expand=True)
"""
  0
name
Tom Bei
Bob Shang
Mary Guang
James Shen
Andy NaN
Alice NaN
""" # 如果使用多个组提取正则表达式会返回一个 DataFrame,每个组只有一列。
# 匹配出空字符串前面和后面的所有字母
user_info.city.str.extract("(\w+)\s+(\w+)", expand=True)
"""
   0   1
name   
Tom Bei Jing
Bob Shang Hai
Mary Guang Zhou
James Shen Zhen
Andy NaN NaN
Alice NaN NaN
"""

匹配所有子串

  extract 只能够匹配出第一个子串,使用 extractall 可以匹配出所有的子串。

# 将所有组的空白字符串前面的字母都匹配出来
user_info.city.str.extractall("(\w+)\s+")
"""
    0
name match
Tom 0 Bei
Bob 0 Shang
Mary 0 Guang
James 0 Shen
"""

测试是否包含子串

  使用 contains 来测试是否包含子串 --> 布尔值

# 测试城市是否包含子串 'Zh':
user_info.city.str.contains("Zh")
# 测试是否是以字母 'S' 开头:
user_info.city.str.contains("^S")

生成哑变量

  这是一个神奇的功能,通过 get_dummies 方法可以将字符串转为哑变量, sep 参数是指定哑变量之间的分隔符

user_info.city.str.get_dummies(sep=" ")

方法摘要

方法  描述
cat()    连接字符串
split() 在分隔符上分割字符串   
rsplit() 从字符串末尾开始分隔字符串
get()           索引到每个元素(检索第i个元素)
join()  使用分隔符在系列的每个元素中加入字符串
get_dummies()  在分隔符上分割字符串,返回虚拟变量的DataFrame 
contains() 如果每个字符串都包含pattern / regex,则返回布尔数组
replace()  用其他字符串替换pattern / regex的出现
repeat() ) 重复值(s.str.repeat(3)等同于x * 3 t2 )
pad()  将空格添加到字符串的左侧,右侧或两侧
center()  相当于str.center
ljust()  相当于str.ljust
rjust()  相当于str.rjust
zfill()  等同于str.zfill
wrap()  将长长的字符串拆分为长度小于给定宽度的行
slice()         切分Series中的每个字符串
slice_replace()  用传递的值替换每个字符串中的切片
count() 计数模式的发生
startswith()  相当于每个元素的str.startswith(pat)
endswith()  相当于每个元素的str.endswith(pat)
findall()  计算每个字符串的所有模式/正则表达式的列表 
match()  在每个元素上调用re.match,返回匹配的组作为列表
extract()  在每个元素上调用re.search,为每个元素返回一行DataFrame,为每个正则表达式捕获组返回一列
extractall()  在每个元素上调用re.findall,为每个匹配返回一行DataFrame,为每个正则表达式捕获组返回一列
len()  计算字符串长度
normalize()  返回Unicode标准格式。相当于unicodedata.normalize 

Pandas文本数据处理的更多相关文章

  1. Pandas缺失数据处理

    Pandas缺失数据处理 Pandas用np.nan代表缺失数据 reindex() 可以修改 索引,会返回一个数据的副本: df1 = df.reindex(index=dates[0:4], co ...

  2. pandas | 使用pandas进行数据处理——DataFrame篇

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构--DataFrame. 上一篇文章当中我们介绍了 ...

  3. Pandas系列(四)-文本数据处理

    内容目录 1. 为什么要用str属性 2. 替换和分割 3. 提取子串 3.1 提取第一个匹配的子串 3.2 匹配所有子串 3.3 测试是否包含子串 3.4 生成哑变量 3.5 方法摘要 一.为什么要 ...

  4. pynlpir + pandas 文本分析

    pynlpir是中科院发布的一个分词系统,pandas(Python Data Analysis Library) 是python中一个常用的用来进行数据分析和统计的库,利用这两个库能够对中文文本数据 ...

  5. Pandas日期数据处理:如何按日期筛选、显示及统计数据

    前言 pandas有着强大的日期数据处理功能,本期我们来了解下pandas处理日期数据的一些基本功能,主要包括以下三个方面: 按日期筛选数据 按日期显示数据 按日期统计数据 运行环境为 windows ...

  6. Pandas文本操作之读取操作

    读写文本格式的数据 pandas中的解析函数 函数 说明 read_csv 从文件.url.文件型对象中加载带分隔符的数据,默认分隔符为逗号 read_table 从文件.url.文件型对象中加载带分 ...

  7. 5,pandas高级数据处理

    1.删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True - keep参数:指定保留哪一重复的行 ...

  8. pandas之数据处理

    首先,数据加载 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,期中read_csv和read_table这两个使用最多. 1.删除重复元素 使用duplicated()函数 ...

  9. Python——Pandas 时间序列数据处理

    介绍 Pandas 是非常著名的开源数据处理库,我们可以通过它完成对数据集进行快速读取.转换.过滤.分析等一系列操作.同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具.本节将介绍 ...

随机推荐

  1. svg foreignObject的作用(文本换行,生成图片)

    SVG内部利用foreignObject嵌入XHTML元素 <foreignObject>元素的作用是可以在其中使用具有其它XML命名空间的XML元素,换句话说借助<foreignO ...

  2. [JavaScript] 《JavaScript高级程序设计》笔记

    1.||   和 && 这两个逻辑运算符和c#是类似的,都是惰性的计算 a() || b()  若a()为真返回a()的结果,此时b()不计算: a()为假则返回b() a() &am ...

  3. Spark 学习笔记之 aggregateByKey

    aggregateByKey: import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apac ...

  4. linux netlink通信机制简介

    一.什么是Netlink通信机制  Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口. Netlink 是一种特殊的 s ...

  5. 面试常考各类排序算法总结.(c#)

    前言 面试以及考试过程中必会出现一道排序算法面试题,为了加深对排序算法的理解,在此我对各种排序算法做个总结归纳. 1.冒泡排序算法(BubbleSort) 1.1 算法描述 (1)比较相邻的元素.如果 ...

  6. js 判断对象是否为空

    利用JSON.stringify var objData = {};JSON.stringify(objData) ==="{}" // true 第二种用原声js 方法 Obje ...

  7. Windows 10 更新后VMware Workstation pro无法运行 (无需卸载原版本VM)

    问题 描述:当前Windows版本是win10-1903,VMware版本比较老旧是VMware Workstation Pro 15.0.4:国庆节后微软推送了一个新的更新补丁,10月10日更新之后 ...

  8. C#学习--Oracle数据库基本操作(连接、增、删、改、查)封装

    写在前面: SQLserver的C#封装:https://www.cnblogs.com/mexihq/p/11636785.html 类似于上篇有关SQLserver的C#封装,小编对Oracle数 ...

  9. RegExp实现字符替换

    将字符串组中的所有Paul替换成Ringo,g:执行全局匹配,查找所有匹配而非在找到第一个匹配后停止;\b:匹配单词边界,划分匹配字符的起始范围 <!DOCTYPE html> <h ...

  10. 机器学习:eclipse中调用weka的Classifier分类器代码Demo

    weka中实现了很多机器学习算法,不管实验室研究或者公司研发,都会或多或少的要使用weka,我的理解是weka是在本地的SparkML,SparkML是分布式的大数据处理机器学习算法,数据量不是很大的 ...