先初始化数据

import pandas as pd
import numpy as np
index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name")
data = {
"age": [18, 30, np.nan, 40, np.nan, 30],
"city": ["Bei Jing", "Shang Hai", "Guang Zhou", "Shen Zhen", np.nan, " "],
"sex": [None, "male", "female", "male", np.nan, "unknown"],
"birth": ["2000-02-10", "1988-10-17", None, "1978-08-08", np.nan, "1988-10-17"]
}
user_info = pd.DataFrame(data=data, index=index)
user_info["birth"] = pd.to_datetime(user_info.birth)
user_info

为什么要用str属性

  文本数据也就是我们常说的字符串,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。在之前已经了解过,在对 Series 中每个元素处理时,我们可以使用 map 或 apply 方法。

# 将每个城市都转为小写:
user_info.city.map(lambda x: x.lower())

  What?竟然出错了,错误原因是因为 float 类型的对象没有 lower 属性。这是因为缺失值 (np.nan)属于float 类型

  这时候我们的  str  属性操作来了,来看看如何使用吧

# 将文本转为小写
user_info.city.str.lower()
# 统计每个字符串的长度
user_info.city.str.len()

替换和分割

替换操作

# 将空字符串替换成下划线:
user_info.city.str.replace(" ", "_")
# 使用正则表达式将所有开头为 S 的城市替换为空字符串:
user_info.city.str.replace("^S.*", " ")

分割操作

# 根据空字符串来分割某一列:
user_info.city.str.split(" ")
"""
name
Tom [Bei, Jing]
Bob [Shang, Hai]
Mary [Guang, Zhou]
James [Shen, Zhen]
Andy NaN
Alice [, ]
Name: city, dtype: object
""" #分割列表中的元素可以使用 get 或 [] 符号进行访问:
user_info.city.str.split(" ").str.get(0)
"""
name
Tom Bei
Bob Shang
Mary Guang
James Shen
Andy NaN
Alice
Name: city, dtype: object
""" user_info.city.str.split(" ").str[1]
"""
name
Tom Jing
Bob Hai
Mary Zhou
James Zhen
Andy NaN
Alice
Name: city, dtype: object
""" # 设置参数 expand=True 可以轻松扩展此项以返回 DataFrame
user_info.city.str.split(" ", expand=True)
"""
    0    1
name
Tom Bei Jing
Bob Shang Hai
Mary Guang Zhou
James Shen Zhen
Andy NaN NaN
Alice
"""

提取子串

  从一个长的字符串中提取出子串。

提取第一个匹配的子串

  extract 只能够匹配出第一个子串,extract 方法接受一个正则表达式并至少包含一个捕获组,指定参数 expand=True 可以保证每次都返回 DataFrame。

  \s+ :一个或多个空字符串 
  (\w+):分组捕获任意多个字符 
  (\w+)\s+:在一个或多个空字符串前,分组捕获任意多个字符

# 匹配空字符串前面的所有的字母
user_info.city.str.extract("(\w+)\s+", expand=True)
"""
  0
name
Tom Bei
Bob Shang
Mary Guang
James Shen
Andy NaN
Alice NaN
""" # 如果使用多个组提取正则表达式会返回一个 DataFrame,每个组只有一列。
# 匹配出空字符串前面和后面的所有字母
user_info.city.str.extract("(\w+)\s+(\w+)", expand=True)
"""
   0   1
name   
Tom Bei Jing
Bob Shang Hai
Mary Guang Zhou
James Shen Zhen
Andy NaN NaN
Alice NaN NaN
"""

匹配所有子串

  extract 只能够匹配出第一个子串,使用 extractall 可以匹配出所有的子串。

# 将所有组的空白字符串前面的字母都匹配出来
user_info.city.str.extractall("(\w+)\s+")
"""
    0
name match
Tom 0 Bei
Bob 0 Shang
Mary 0 Guang
James 0 Shen
"""

测试是否包含子串

  使用 contains 来测试是否包含子串 --> 布尔值

# 测试城市是否包含子串 'Zh':
user_info.city.str.contains("Zh")
# 测试是否是以字母 'S' 开头:
user_info.city.str.contains("^S")

生成哑变量

  这是一个神奇的功能,通过 get_dummies 方法可以将字符串转为哑变量, sep 参数是指定哑变量之间的分隔符

user_info.city.str.get_dummies(sep=" ")

方法摘要

方法  描述
cat()    连接字符串
split() 在分隔符上分割字符串   
rsplit() 从字符串末尾开始分隔字符串
get()           索引到每个元素(检索第i个元素)
join()  使用分隔符在系列的每个元素中加入字符串
get_dummies()  在分隔符上分割字符串,返回虚拟变量的DataFrame 
contains() 如果每个字符串都包含pattern / regex,则返回布尔数组
replace()  用其他字符串替换pattern / regex的出现
repeat() ) 重复值(s.str.repeat(3)等同于x * 3 t2 )
pad()  将空格添加到字符串的左侧,右侧或两侧
center()  相当于str.center
ljust()  相当于str.ljust
rjust()  相当于str.rjust
zfill()  等同于str.zfill
wrap()  将长长的字符串拆分为长度小于给定宽度的行
slice()         切分Series中的每个字符串
slice_replace()  用传递的值替换每个字符串中的切片
count() 计数模式的发生
startswith()  相当于每个元素的str.startswith(pat)
endswith()  相当于每个元素的str.endswith(pat)
findall()  计算每个字符串的所有模式/正则表达式的列表 
match()  在每个元素上调用re.match,返回匹配的组作为列表
extract()  在每个元素上调用re.search,为每个元素返回一行DataFrame,为每个正则表达式捕获组返回一列
extractall()  在每个元素上调用re.findall,为每个匹配返回一行DataFrame,为每个正则表达式捕获组返回一列
len()  计算字符串长度
normalize()  返回Unicode标准格式。相当于unicodedata.normalize 

Pandas文本数据处理的更多相关文章

  1. Pandas缺失数据处理

    Pandas缺失数据处理 Pandas用np.nan代表缺失数据 reindex() 可以修改 索引,会返回一个数据的副本: df1 = df.reindex(index=dates[0:4], co ...

  2. pandas | 使用pandas进行数据处理——DataFrame篇

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构--DataFrame. 上一篇文章当中我们介绍了 ...

  3. Pandas系列(四)-文本数据处理

    内容目录 1. 为什么要用str属性 2. 替换和分割 3. 提取子串 3.1 提取第一个匹配的子串 3.2 匹配所有子串 3.3 测试是否包含子串 3.4 生成哑变量 3.5 方法摘要 一.为什么要 ...

  4. pynlpir + pandas 文本分析

    pynlpir是中科院发布的一个分词系统,pandas(Python Data Analysis Library) 是python中一个常用的用来进行数据分析和统计的库,利用这两个库能够对中文文本数据 ...

  5. Pandas日期数据处理:如何按日期筛选、显示及统计数据

    前言 pandas有着强大的日期数据处理功能,本期我们来了解下pandas处理日期数据的一些基本功能,主要包括以下三个方面: 按日期筛选数据 按日期显示数据 按日期统计数据 运行环境为 windows ...

  6. Pandas文本操作之读取操作

    读写文本格式的数据 pandas中的解析函数 函数 说明 read_csv 从文件.url.文件型对象中加载带分隔符的数据,默认分隔符为逗号 read_table 从文件.url.文件型对象中加载带分 ...

  7. 5,pandas高级数据处理

    1.删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True - keep参数:指定保留哪一重复的行 ...

  8. pandas之数据处理

    首先,数据加载 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,期中read_csv和read_table这两个使用最多. 1.删除重复元素 使用duplicated()函数 ...

  9. Python——Pandas 时间序列数据处理

    介绍 Pandas 是非常著名的开源数据处理库,我们可以通过它完成对数据集进行快速读取.转换.过滤.分析等一系列操作.同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具.本节将介绍 ...

随机推荐

  1. elasticsearch http 搜索 测试

    1.查询所有的documents http://192.168.43.45:9200/_search boost parameter 细粒度搜索条件权重控制 如:组装多个查询条件,其中一个匹配的想要优 ...

  2. [Note] Clipboard.js 使用

    clipboard.js是一个用来设置剪切板的库,小巧无依赖,但用法有点诡异,必须依赖一个DOM元素 据作者说,由于浏览器相关安全策略的缘故,无法使用下面这种方式来设置剪切板 clipboard.co ...

  3. python urllib2实现http GET PUT DELETE POST的方法

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/3/11 下午8:33 # @Author : liubing # @File ...

  4. Python之string模块(详细讲述string常见的所有方法)

    相信不少学习python的程序员都接触过string模块 string模块主要包含关于字符串的处理函数 多说无益,初学python的小伙伴还不赶紧码起来 接下来将会讲到字符串的大小写.判断函数. 以及 ...

  5. PhpSpreadsheet 导出特定格式 — 广告请款单

    需求说明 最近需要实现一个导出这种格式的Excel表单,之前都有用过导出Excel的功能,但大都是表头+数据的形式,只用于获取数据,没有太多样式要求,不用合并单元格.合并居中等,也不用对每一行数据特异 ...

  6. vue中methods,computed,filters,watch的总结

    08.28自我总结 vue中methods,computed,filters,watch的总结 一.methods methods属性里面的方法会在数据发生变化的时候你,只要引用了此里面分方法,方法就 ...

  7. 【Medium 万赞好文】ViewModel 和 LIveData:模式 + 反模式

    原文作者: Jose Alcérreca 原文地址: ViewModels and LiveData: Patterns + AntiPatterns 译者:秉心说 View 和 ViewModel ...

  8. Web安全之注入点构造

    在测试过程中,经常需要自己本地构造注入点来进行SQL测试,这边分享一下,不同环境下构造SQL注入的代码. PHP+MYSQL版 <?php $con = mysql_connect(" ...

  9. 域渗透-msdtc实现dll劫持后门

    最近用的多  一个实用小tips 文章参考原创Shadow Force大牛  翻译文章参考三好大佬 利用MSDTC服务加载后门dll,实现自启动后门 后门思路可以查看趋势科技文章 https://bl ...

  10. 后门免杀工具-Backdoor-factory

    水一水最近玩的工具 弄dll注入的时候用到的 介绍这款老工具 免杀效果一般..但是简单实用  目录: 0x01 backdoor-factory简介 0x02 特点功能 0x03 具体参数使用 PS: ...