LOJ2719. 「NOI2018」冒泡排序 [组合计数]
思路
这题我看着题解还搞了几个小时?我也不知道自己在干啥……
首先你要通过出色的分析能力得到一个结论:一个排列合法当且仅当它的最长下降子序列长度不超过2。
证明?懒得写了。
然后我们不管字典序的限制,先写出一个DP:\(dp_{i,j}\)表示考虑了前\(i\)个,之前最大值是\(j\),的方案数。转移就考虑下一个位置是填一个比最大值更大的数,或是填还没有填的数里面最小的数。
其实就是\(dp_{i,j}\rightarrow dp_{i+1,k},k\ge j\),但\(i=j\)的时候不能转移到\(dp_{i+1,j}\)。
我们假装\(dp_{i+1,j}\)这里也有一个虚点,那么就可以把转移看成往右走一步,然后往上走若干步。这里的转移可以转移到\(dp_{i+1,i}\),但是不能把\(dp_{i+1,i}\)转移到其他位置。(其实就是为了方便才搞出这么个特殊点)
初始从\(dp_{0,0}=1\)开始走,第一步必须向右然后向上若干步。最后答案是\(dp_{n,n}\)。
观察这个DP式子,发现把\(dp_{i,j}\)看做点\((i,j)\),那么它的值就是从\((1,1)\)走到\((i,j)\),只能向右或向上,并且不能摸到\(y=x-2\)这一条直线,的方案数。
不能碰到某条直线的这个套路我们非常熟悉,就是把起点对于它对称一下,方案数减掉,就可以了。
于是我们有\(dp_{n,n}={2n-2\choose n-1}-{2n-2\choose n-3}\)。
那么现在再来看一看字典序的限制,容易想到枚举前面几项相等,有一项更大,然后后面放飞自我。
这个怎么处理呢?设第\(i\)位不同,已经填完的数的最大值为\(mx\),那么这一位就必须填大于\(\max({mx,a_i})\)的数。为什么?如果小于\(mx\),那么就必须是未出现里面最小的数,就一定小于等于\(a_i\)了,就不合法了。
这相当于限定起点是\((i,\max(a_i,mx)+1)\),仍然是走到\((n,n)\),所以方案数也很容易算。
还有一个注意的地方是前\(i-1\)个的填法必须合法,也就是说每次要么大于最大值要么是最小值,否则就立刻break。
代码
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 1206060
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#else
freopen("inverse.in","r",stdin);
freopen("inverse.out","w",stdout);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n;
int a[sz];
ll fac[sz],_fac[sz];
void init(){_fac[0]=fac[0]=1;rep(i,1,sz-1) fac[i]=fac[i-1]*i%mod;_fac[sz-1]=inv(fac[sz-1]);drep(i,sz-2,1) _fac[i]=_fac[i+1]*(i+1)%mod;}
ll C(int n,int m){return n>=m&&m>=0?fac[n]*_fac[m]%mod*_fac[n-m]%mod:0;}
ll calc(int x,int y)
{
ll ret=C(n-x+n-y,n-x);
x-=1,y+=1,swap(x,y),x+=1,y-=1;
ret=(mod+ret-C(n-x+n-y,n-x))%mod;
return ret;
}
int vis[sz];
void work()
{
read(n);
rep(i,1,n) read(a[i]);
int mx=0,mn=1;ll ans=0;
rep(i,1,n)
{
(ans+=calc(i,max(a[i],mx)+1))%=mod;
if (a[i]<mx&&a[i]!=mn) break;
vis[a[i]]=1;
while (vis[mn]) ++mn;
chkmax(mx,a[i]);
}
printf("%lld\n",ans);
rep(i,1,n) vis[i]=0;
}
int main()
{
file();
init();
int T;read(T);
while (T--) work();
return 0;
}
LOJ2719. 「NOI2018」冒泡排序 [组合计数]的更多相关文章
- LOJ2719 「NOI2018」冒泡排序
「NOI2018」冒泡排序 题目描述 最近,小S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 1 到n 的排列的冒泡排序. 下面是对冒泡排序的算法描述. 输入:一个长度为n 的排列p[ ...
- Loj #2719. 「NOI2018」冒泡排序
Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排 ...
- 「NOI2018」冒泡排序
「NOI2018」冒泡排序 考虑冒泡排序中一个位置上的数向左移动的步数 \(Lstep\) 为左边比它大的数的个数,向右移动的步数 \(Rstep\) 为右边比它大的数的个数,如果 \(Lstep,R ...
- LOJ #2719. 「NOI2018」冒泡排序(组合数 + 树状数组)
题意 给你一个长为 \(n\) 的排列 \(p\) ,问你有多少个等长的排列满足 字典序比 \(p\) 大 : 它进行冒泡排序所需要交换的次数可以取到下界,也就是令第 \(i\) 个数为 \(a_i\ ...
- loj 2719 「NOI2018」冒泡排序 - 组合数学
题目传送门 传送门 题目大意 (相信大家都知道) 显然要考虑一个排列$p$合法的充要条件. 考虑这样一个构造$p$的过程.设排列$p^{-1}_{i}$满足$p_{p^{-1}_i} = i$. 初始 ...
- LOJ 2719 「NOI2018」冒泡排序——模型转化
题目:https://loj.ac/problem/2719 首先要发现合法的充要条件是 | LDS | <=2 ! 因为有没用的步数,说明一个元素先往左移.又往右移(不会先往右移再往左移,因为 ...
- LOJ2722 「NOI2018」情报中心
「NOI2018」情报中心 题目描述 C 国和D 国近年来战火纷飞. 最近,C 国成功地渗透进入了D 国的一个城市.这个城市可以抽象成一张有$n$ 个节点,节点之间由$n - 1$ 条双向的边连接的无 ...
- 「NOI2013」树的计数 解题报告
「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...
- 「NOI2018」屠龙勇士(EXCRT)
「NOI2018」屠龙勇士(EXCRT) 终于把传说中 \(NOI2018D2\) 的签到题写掉了... 开始我还没读懂题目...而且这题细节巨麻烦...(可能对我而言) 首先我们要转换一下,每次的 ...
随机推荐
- OO——UML解析
目录 第四单元博客作业 一.前两次作业架构设计 1. 第一次作业 2. 第二次作业 二.架构设计以及对OO方法理解的演进 1. 表达式求导 2. 多线程电梯 3. 地铁线路查询 4. UML图的解析 ...
- js 移动端之监听软键盘弹出收起
js 移动端关于页面布局,如果底部有position:fixed的盒子,又有input,当软键盘弹出收起都会影响页面布局.这时候Android可以监听resize事件,代码如下,而ios没有相关事件. ...
- springboot实现读写分离(基于Mybatis,mysql)
近日工作任务较轻,有空学习学习技术,遂来研究如果实现读写分离.这里用博客记录下过程,一方面可备日后查看,同时也能分享给大家(网上的资料真的大都是抄来抄去,,还不带格式的,看的真心难受). 完整代码:h ...
- FreeRTOS计数型信号量
API函数 //创建 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) #define xSemaphoreCreateCounting( uxMaxCount ...
- mysql8.x 新版本jdbc连接方式
旧版本,MySQL Connector/J 5.x 版本的连接方式:url = jdbc:mysql://localhost:3306/thrcloud_db01?useUnicode=true&am ...
- git学习记录--标签随笔
创建标签: 命令git tag <name>用于新建一个标签,默认为HEAD,也可以指定一个commit id: git tag -a <tagname> -m "b ...
- Spark 宽窄依赖和stage的划分
窄依赖 父RDD和子RDD partition之间的关系是一对一的,或者父RDD一个partition只对应一个子RDD的partition情况下的父RDD和子RDD partition关系是多对一的 ...
- 【Flask】 python学习第一章 - 3.0 正则转换和错误捕捉
3.1正则转换器定义 Class RegexConverter(BaseConverter): regex = "[0-9]{6}" app.url_map.converters[ ...
- Python如何打印文字对应的索引
用python编写一个简单的小程序:将文字对应的索引打印出来. test=input('>>>') print(test) l=len(test) print(l) r=range( ...
- HTML&CSS基础-伪元素选择器
HTML&CSS基础-伪元素选择器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.html源代码 <!DOCTYPE html> <html> ...