CSE301 – Bio-Computation Assessment 3
Contribution to overall module assessment 10%
Submission deadline 18:00, Friday, Dec 20 2019
1. Assessment Task
In this assessment, you are to implement MLP with back-propagation training algorithm, and RBF
network with the RBF centers initialized from k-means clustering, using MATLAB for vehicle logo
classification. Please use sigmoid activation functions where necessary.
In the dataset (logo.mat), 117 samples of 5 different types of vehicle logo images as shown in Fig. 1
are provided, with corresponding class labels (1-5) and 80 features in each sample using appropriate
feature extraction algorithm.
Fig.1 Examples of vehicle logo images
For both MLP and RBF design, divide the dataset into a training set (80%) and a testing set (20%) and
show the convergence performance using MSE for each epoch in the training process.
Based on your algorithms designed, discuss the following in the report:
(1) for MLP: the effect of different number of hidden units;
(2) for MLP: the effect of different learning rate and momentum;
(3) for RBF: the effect of different number of RBF centres;
(4) compare the best MLP model and the best RBF model using confusion matrix.
Note:
(1) it is acceptable to follow references (or using code fragments) from textbooks or internet
resources, but you must cite them clearly in your report;
(2) it is acceptable to apply Matlab toolboxes and Matlab functions.
2. Report
Each student must write an individual report in English. The report must be a single file in .pdf format
including all the plots, figures, tables and appendixes (failure to comply with this requirement will be
marked as Fail according 5. Marking Criteria).
The format of the report is: single-column A4 size, Times New Roman 12pt, single line spacing, page
numbered, 0.75-inch margin on top/bottom/left/right, and with maximum 10 pages including cover
page, reference (and appendixes if any).
The structure of the report is:
(1) introduction: task description and background;
(2) methodology: introduction of the methods and models;
(3) experimental results and analysis: experiment procedures, results discussion and analysis,
performance comparison etc.;
(4) conclusion;
(5) references.
3. Submission
You are required to:
(1) compress your written report and source code into one single .ZIP file (other format such as .rar
or .7z will be marked as Fail according to 5. Marking Criteria);
(2) name the zip file as: StudentID_GivenName_Surname (e.g. 1601234_Rui_Yang);
(3) upload to the submission folder in ICE by 18:00, Friday, Dec 20 2019.
Late submission will receive penalty in the marking in accordance with the University Code of Practice
on Assessment. For each working day after the deadline, 5 marks (out of 100) will be deducted for up
CSE301留学生作业代写、MATLAB程序语言作业调试
to 5 working days. However, the mark will not be reduced below the pass mark for the assessment.
Work assessed below the pass mark will not be penalised for late submission of up to 5 days. Work
received more than 5 working days after the deadline will receive a mark of 0.
4. Plagiarism
This assessment is an individual work. Plagiarism (e.g. copying materials from other sources without
proper acknowledgement) is a serious academic offence. Plagiarism will not be tolerated and will be
dealt with in accordance with the University Code of Practice on Assessment.
5. Marking Criteria
Category Requirement
First Class
(≥70%)
Overall outstanding work. All of the requirements have been implemented in the
program and report. Highly qualified report that closes to professional level. The
report is well-structured and organized, with all of required information included,
with very few English problems.
Second Upper
(60 to 69%)
Most of the requirements have been implemented in the program and report.
Good report which is clearly structured with most of the required information but
with few English problems.
Second Lower
(50 to 59%)
Substantial working program implementing a good range of the requirements.
Acceptable written report for Year 4 level, which contains sufficient information
but some English problems.
Third
(40 to 49%)
Executable program that generates recognizable results, which however are
incomplete. The written report is readable with insufficient information covered.
Problems may appear in the structure and organization, with many English
problems.
Fail
(0 to 39%)
Wrong format in submission. Program is not working; or most of the required
results are not produced; or without acknowledging properly sources used if any.
Poor report which covers very limited number of items required.
No submission A mark of 0 will be awarded.
END OF DOCUMENT

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或 微信:codehelp

CSE301 – Bio-Computation的更多相关文章

  1. BIO\NIO\AIO记录

    IO操作可以分为3类:同步阻塞(BIO).同步非阻塞(NIO).异步(AIO). 同步阻塞(BIO):在此种方式下,用户线程发起一个IO操作以后,必须等待IO操作的完成,只有当真正完成了IO操作以后, ...

  2. (转)也谈BIO | NIO | AIO (Java版)

    原文地址: https://my.oschina.net/bluesky0leon/blog/132361 关于BIO | NIO | AIO的讨论一直存在,有时候也很容易让人混淆,就我的理解,给出一 ...

  3. socket Bio demo

    最近在做socket通信,最开始是基于Bio开发(其实开发的时候也不知道这种是基于BIO).但是问题来了,客户端发的报文,服务端接收会少,为了解决问题,只能恶补一下相关知识. 服务端: import ...

  4. 网络通信简单实例BIO,NIO,AIO

    这里,我将做一个简单的通信程序,分别使用三种原始的通信工具:BIO,NIO,AIO. 功能就是一个服务器,一个客户端.服务器就是处理请求,返回响应.而客户端就是连接服务器,发送请求,接收响应. 第一步 ...

  5. VECTOR COMPUTATION

    COMPUTER OR GANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION Although the perform ...

  6. 【转】Tomcat 的三种(bio,nio.apr) 高级 Connector 运行模式

    转载地址:http://www.oschina.net/question/54100_16195   tomcat的运行模式有3种.修改他们的运行模式.3种模式的运行是否成功,可以看他的启动控制台,或 ...

  7. REDIS fdatasync技术问题和BIO技术的引入

    http://oldblog.antirez.com/post/fsync-different-thread-useless.html 这是原文作者的博客 把他翻译下 带上自己的一些理解 看看作者引入 ...

  8. Java BIO、NIO、AIO 学习(转)

    转自 http://stevex.blog.51cto.com/4300375/1284437 先来个例子理解一下概念,以银行取款为例: 同步 : 自己亲自出马持银行卡到银行取钱(使用同步IO时,Ja ...

  9. Tomcat Connector三种运行模式(BIO, NIO, APR)的比较和优化

    Tomcat Connector的三种不同的运行模式性能相差很大,有人测试过的结果如下: 这三种模式的不同之处如下: BIO: 一个线程处理一个请求.缺点:并发量高时,线程数较多,浪费资源. Tomc ...

  10. BIO,NIO,AIO

    同步阻塞IO(JAVA BIO):     同步并阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可 ...

随机推荐

  1. 协程介绍, Greenlet模块,Gevent模块,Genvent之同步与异步

    昨日内容回顾 I/O模型,面试会问到I/O操作,不占用CPU.它内部有一个专门的处理I/O模块.print和写log 属于I/O操作,它不占用CPU 线程GIL保证一个进程中的多个线程在同一时刻只有一 ...

  2. PHP变量回收

    PHP变量回收1 离开页面2 unset

  3. .NET Core 之 Nancy 基本使用

    Nancy简介 Nancy是一个轻量级的独立的框架,下面是官网的一些介绍: Nancy 是一个轻量级用于构建基于 HTTP 的 Web 服务,基于 .NET 和 Mono 平台,框架的目标是保持尽可能 ...

  4. cisco ap客户端无规律掉线

    设备 cisco air-ct2504-50-k9 cisco air-ap1832I-H-k9 首先根据这个帖子 https://community.cisco.com/t5/other-wirel ...

  5. C 猜猜猜😀文字小游戏

    前言 - 随机性 随机数生成 - https://zh.wikipedia.org/wiki/%E9%9A%8F%E6%9C%BA%E6%95%B0%E7%94%9F%E6%88%90 没啥事情, 写 ...

  6. sqlite 安装与编译

    本文简述了SQLite的概念,并详细描述了SQLite在Linux和Windows平台下的编译方法 关于 SQLite SQLite是一个进程内的库,实现了自给自足的.无服务器的.零配置的.事务性的 ...

  7. 【1】volatile关键字解析

    volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以 ...

  8. nmon2influxdb+grafana:服务监控可视化部署

    在工作中,无论是定位线上问题,还是性能优化,都需要对前端.后台服务进行监控.而及时的获取监控数据,能更好的帮助技术人员排查定位问题. 前面的博客介绍过服务端监控工具:Nmon使用方法及利用easyNm ...

  9. 获取当前URL地址和$_GET获取参数

    用这个方法,可以在不使用$_get[]就可以获取get传过来的参数.还可以获取当前的URL public function getCurrentUrl() { $pageURL = 'http'; i ...

  10. python 函数的链式调用(一个函数调用使用两个括号)

    # python 函数的链式调用 def funcA(a): def funcB(b): for a_each in a: x = funcB(a_each) return x return func ...