You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

Find out how many ways to assign symbols to make sum of integers equal to target S.

Example 1:

Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.

Note:

    1. The length of the given array is positive and will not exceed 20.
    2. The sum of elements in the given array will not exceed 1000.
    3. Your output answer is guaranteed to be fitted in a 32-bit integer.

这道题给了我们一个数组,和一个目标值,让给数组中每个数字加上正号或负号,然后求和要和目标值相等,求有多少中不同的情况。那么对于这种求多种情况的问题,博主最想到的方法使用递归来做。从第一个数字,调用递归函数,在递归函数中,分别对目标值进行加上当前数字调用递归,和减去当前数字调用递归,这样会涵盖所有情况,并且当所有数字遍历完成后,若目标值为0了,则结果 res 自增1,参见代码如下:

解法一:

class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int res = ;
helper(nums, S, , res);
return res;
}
void helper(vector<int>& nums, long S, int start, int& res) {
if (start >= nums.size()) {
if (S == ) ++res;
return;
}
helper(nums, S - nums[start], start + , res);
helper(nums, S + nums[start], start + , res);
}
};

我们对上面的递归方法进行优化,使用 memo 数组来记录中间值,这样可以避免重复运算,参见代码如下:

解法二:

class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
vector<unordered_map<int, int>> memo(nums.size());
return helper(nums, S, , memo);
}
int helper(vector<int>& nums, long sum, int start, vector<unordered_map<int, int>>& memo) {
if (start == nums.size()) return sum == ;
if (memo[start].count(sum)) return memo[start][sum];
int cnt1 = helper(nums, sum - nums[start], start + , memo);
int cnt2 = helper(nums, sum + nums[start], start + , memo);
return memo[start][sum] = cnt1 + cnt2;
}
};

我们也可以使用迭代的方法来解,使用一个 dp 数组,其中 dp[i][j] 表示到第 i-1 个数字且和为j的情况总数,参见代码如下:

解法三:

class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int n = nums.size();
vector<unordered_map<int, int>> dp(n + );
dp[][] = ;
for (int i = ; i < n; ++i) {
for (auto &a : dp[i]) {
int sum = a.first, cnt = a.second;
dp[i + ][sum + nums[i]] += cnt;
dp[i + ][sum - nums[i]] += cnt;
}
}
return dp[n][S];
}
};

我们也可以对上面的方法进行空间上的优化,只用一个 HashMap,而不是用一个数组的哈希表,在遍历数组中的每一个数字时,新建一个 HashMap,在遍历原 HashMap 中的项时更新这个新建的 HashMap,最后把新建的 HashMap 整个赋值为原 HashMap,参见代码如下:

解法四:

class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
unordered_map<int, int> dp;
dp[] = ;
for (int num : nums) {
unordered_map<int, int> t;
for (auto a : dp) {
int sum = a.first, cnt = a.second;
t[sum + num] += cnt;
t[sum - num] += cnt;
}
dp = t;
}
return dp[S];
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/494

类似题目:

Expression Add Operators

参考资料:

https://leetcode.com/problems/target-sum/

https://leetcode.com/problems/target-sum/discuss/97371/Java-Short-DFS-Solution

https://leetcode.com/problems/target-sum/discuss/97369/Evolve-from-brute-force-to-dp

https://leetcode.com/problems/target-sum/discuss/97334/Java-(15-ms)-C%2B%2B-(3-ms)-O(ns)-iterative-DP-solution-using-subset-sum-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 494. Target Sum 目标和的更多相关文章

  1. LN : leetcode 494 Target Sum

    lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...

  2. 494 Target Sum 目标和

    给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S.现在你有两个符号 + 和 -.对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面.返回可以使最终数组和为 ...

  3. Leetcode 494 Target Sum 动态规划 背包+滚动数据

    这是一道水题,作为没有货的水货楼主如是说. 题意:已知一个数组nums {a1,a2,a3,.....,an}(其中0<ai <=1000(1<=k<=n, n<=20) ...

  4. [Leetcode] DP -- Target Sum

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  5. LC 494. Target Sum

    问题描述 You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 ...

  6. [LeetCode] Target Sum 目标和

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  7. 【LeetCode】494. Target Sum 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  8. 【leetcode】494. Target Sum

    题目如下: 解题思路:这题可以用动态规划来做.记dp[i][j] = x,表示使用nums的第0个到第i个之间的所有元素得到数值j有x种方法,那么很容易得到递推关系式,dp[i][j] = dp[i- ...

  9. 494. Target Sum - Unsolved

    https://leetcode.com/problems/target-sum/#/description You are given a list of non-negative integers ...

随机推荐

  1. 五、Spring之自动装配

    Spring之自动装配 ​ Spring利用依赖注入(DI),完成对IOC容器中各个组件依赖关系的赋值. [1]@Autowired @Autowired 注解,它可以对类成员变量.方法及构造函数进行 ...

  2. C++:Name Lookup & Best Match

    名字查找 每当一个变量或者一个对象出现,编译器都会进行名字查找(name lookup),以确认这个变量或对象的具体属性.一般情况下,程序会从变量出现的地方开始向上查找,由内向外查找各级作用域直到全局 ...

  3. java 金额数字转换大写算法

    根据人民币大写金额规范,转换有几点要注意的: 阿拉伯数字中间有"0"时,中文大写金额中间可以只写一个"零"字.如¥1,409.50,应写成人民币壹仟肆佰零玖圆伍 ...

  4. python yield from (二)

    #pep380 #1. RESULT = yield from EXPR可以简化成下面这样 #一些说明 """ _i:子生成器,同时也是一个迭代器 _y:子生成器生产的值 ...

  5. Unsupervised Attention-guided Image-to-Image Translation

    这是NeurIPS 2018一篇图像翻译的文章.目前的无监督图像到图像的翻译技术很难在不改变背景或场景中多个对象交互方式的情况下将注意力集中在改变的对象上去.这篇文章的解决思路是使用注意力导向来进行图 ...

  6. 短的 Guid 帮助类

    直接贴代码了: /// <summary> /// 短的 Guid 帮助类 /// </summary> public class ShortGuidHelper { #reg ...

  7. CentOS安装etcd和flannel实现Docker跨物理机通信

    1.安装etcd yum install etcd systemctl stop etcd systemctl start etcd systemctl status etcd systemctl e ...

  8. jieba分词原理-DAG(NO HMM)

    最近公司在做一个推荐系统,让我给论坛上的帖子找关键字,当时给我说让我用jieba分词,我周末回去看了看,感觉不错,还学习了一下具体的原理 首先,通过正则表达式,将文章内容切分,形成一个句子数组,这个比 ...

  9. 微信小程序的线程架构

    小程序的线程架构 每个小程序包含一个描述整体程序的app实例和多个描述页面的page. 其中app由3个文件构成: app.json 公共配置文件 app.wxss 公共样式文件 app.js 主体逻 ...

  10. jenkins使用小技巧:jenkins构建出来的war/jar包如何带上SVN号?

    在实际使用过程中,一般会这样比如说打出来的包是 mypackage.jar, 但是每次打出来都是固定的 mypackage.jar如何来区分和上一个包的区别呢? 一般来说,会把打出来的包带上个 svn ...