CF1097G Vladislav and a Great Legend 组合、树形背包
看到\(k\)次幂求和先用斯特林数拆幂:\(x^k = \sum\limits_{i=1}^k \binom{x}{i}\left\{ \begin{array}{cccc} k \\ i \end{array} \right\}i!\)。
那么原式等于\(\sum\limits_{X} \sum\limits_{i=1}^k \binom{f(X)}{i}\left\{ \begin{array}{cccc} k \\ i \end{array} \right\}i! = \sum\limits_{i=1}^k \left\{ \begin{array}{cccc} k \\ i \end{array} \right\}i! \sum\limits_{X} \binom{f(X)}{i}\)。
那么我们需要求\(\sum\limits_{X} \binom{f(X)}{i}\),它的组合意义就是从点集\(X\)的斯坦纳树中无序选出\(i\)条边的方案总数。不难发现这个就可以背包了。
设\(f_{i,j}\)表示在斯坦纳树经过点\(i\)的所有点集中选择\(j\)条边的方案数。当一个儿子转移上来的时候分三种情况转移:
1、不选择这一个子树;
2、只选择这一棵子树,此时需要考虑这棵子树到当前点的边;
3、同时选择当前点的其他子树(或者当前点)和这一棵子树,此时需要考虑这棵子树到当前点的边。
值得注意的是只有在计算3的时候才能够贡献答案,因为1在之前已经贡献过答案了,而2只是某一棵子树向上延伸的结果,实际上并没有找到一个合法的斯坦纳树,所以不能贡献答案。
然后又把模数写成了998244353
CF1097G Vladislav and a Great Legend 组合、树形背包的更多相关文章
- CF1097G Vladislav and a Great Legend
传送门 题目大意 一棵$n$个点的树,一个点集$S$的权值定义为把这个点击连成一个联通块的最少边数,求: $$ans=\sum_{S\in U}f(S)^k$$ 题解 这题跟gdoi那道题差不多 先把 ...
- poj2486Apple Tree[树形背包!!!]
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9989 Accepted: 3324 Descri ...
- cdoj 1136 邱老师玩游戏 树形背包
邱老师玩游戏 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1136 Desc ...
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- poj 1155 TELE (树形背包dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: poj-1155 题意 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构, ...
- bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]
4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...
- [HAOI2015]树上染色(树形背包)
有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之间的距离加 ...
- Luogu 1273 有线电视网 - 树形背包
Description 树形背包, 遍历到一个节点, 枚举它的每个子节点要选择多少个用户进行转移. Code #include<cstring> #include<cstdio> ...
- BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包
分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...
随机推荐
- 【洛谷P5049】旅行(数据加强版)
题目链接 m=n-1是直接按字典序dfs就行, m=n时是一棵基环树,我们发现当一个点在环上时,可以把它和它的一个在环上的儿子之间的边删掉,然后回溯,到达它的第一个有其他儿子的祖先的另一个儿子上,我们 ...
- shell脚本编程基础之while、for、until循环
while及until循环结构 while CONDITION:do statement done 进入循环:条件满足 退出循环:条件不满足 当需要命令的执行状态返回值时,可以直接把整个命令当做循环的 ...
- [JLOI 2015]骗我呢
传送门 Description 求给\(n*m\)的矩阵填数的方案数 满足: \[ 1\leq x_{i,j}\leq m \] \[ x_{i,j}<x_{i,j+1} \] \[ x_{i, ...
- [RoarCTF 2019]Online Proxy
目录 [RoarCTF 2019]Online Proxy [RoarCTF 2019]Online Proxy 题目复现链接:https://buuoj.cn/challenges 参考链接:官方w ...
- On-line fusion of trackers for single-object tracking
On-line fusion of trackers for single-object tracking Pattern Recognition, 2018 - Elsevier 2019-08-1 ...
- jar第三方组件Dependency-check依赖检查工具
jar第三方组件Dependency-check依赖检查工具 http://www.mianhuage.com/913.html 工具下载 http://dl.bintray.com/jeremy-l ...
- PostMan Request Export
- EF Core基本使用
Mysql: nuget 安装 Pomelo.EntityFrameworkCore.MySql Microsoft.EntityFrameworkCore.Design csprj 修改: < ...
- Python - Django - form 组件自定义校验
reg2.html: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...
- logrotate 切割日志
在工作中需要切割日志我们项目中选择的系统自带的logrotate,如需要其他需求需要自己在百度一下或者参考: https://www.cnblogs.com/kevingrace/p/6307298. ...