CF1097G Vladislav and a Great Legend 组合、树形背包
看到\(k\)次幂求和先用斯特林数拆幂:\(x^k = \sum\limits_{i=1}^k \binom{x}{i}\left\{ \begin{array}{cccc} k \\ i \end{array} \right\}i!\)。
那么原式等于\(\sum\limits_{X} \sum\limits_{i=1}^k \binom{f(X)}{i}\left\{ \begin{array}{cccc} k \\ i \end{array} \right\}i! = \sum\limits_{i=1}^k \left\{ \begin{array}{cccc} k \\ i \end{array} \right\}i! \sum\limits_{X} \binom{f(X)}{i}\)。
那么我们需要求\(\sum\limits_{X} \binom{f(X)}{i}\),它的组合意义就是从点集\(X\)的斯坦纳树中无序选出\(i\)条边的方案总数。不难发现这个就可以背包了。
设\(f_{i,j}\)表示在斯坦纳树经过点\(i\)的所有点集中选择\(j\)条边的方案数。当一个儿子转移上来的时候分三种情况转移:
1、不选择这一个子树;
2、只选择这一棵子树,此时需要考虑这棵子树到当前点的边;
3、同时选择当前点的其他子树(或者当前点)和这一棵子树,此时需要考虑这棵子树到当前点的边。
值得注意的是只有在计算3的时候才能够贡献答案,因为1在之前已经贡献过答案了,而2只是某一棵子树向上延伸的结果,实际上并没有找到一个合法的斯坦纳树,所以不能贡献答案。
然后又把模数写成了998244353
CF1097G Vladislav and a Great Legend 组合、树形背包的更多相关文章
- CF1097G Vladislav and a Great Legend
传送门 题目大意 一棵$n$个点的树,一个点集$S$的权值定义为把这个点击连成一个联通块的最少边数,求: $$ans=\sum_{S\in U}f(S)^k$$ 题解 这题跟gdoi那道题差不多 先把 ...
- poj2486Apple Tree[树形背包!!!]
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9989 Accepted: 3324 Descri ...
- cdoj 1136 邱老师玩游戏 树形背包
邱老师玩游戏 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1136 Desc ...
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- poj 1155 TELE (树形背包dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: poj-1155 题意 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构, ...
- bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]
4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...
- [HAOI2015]树上染色(树形背包)
有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之间的距离加 ...
- Luogu 1273 有线电视网 - 树形背包
Description 树形背包, 遍历到一个节点, 枚举它的每个子节点要选择多少个用户进行转移. Code #include<cstring> #include<cstdio> ...
- BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包
分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...
随机推荐
- 51Nod 1769 Clarke and math2
51Nod 1769 Clarke and math2 http://www.51nod.com/Challenge/Problem.html#!#problemId=1769 要算的是\(G=F*I ...
- [译]深度神经网络的多任务学习概览(An Overview of Multi-task Learning in Deep Neural Networks)
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我 ...
- 微信小程序电影模板
[外链图片转存失败(img-STw401rR-1565101469846)(https://upload-images.jianshu.io/upload_images/11158618-52efd0 ...
- 【转】Resource Localization in YARN
一个Applciation运行在YARN上的流程为,从YARN Client向ResourceManager提交任务,将Applciation所需资源提交到HDFS中,然后ResourceManage ...
- GoCN每日新闻(2019-10-11)
GoCN每日新闻(2019-10-11) GoCN每日新闻(2019-10-11) 1. golang 将数据库转换为gorm结构 https://studygolang.com/articles/2 ...
- BZOJ1034 ZJOJ2008 泡泡堂BNB
BZOJ1034 ZJOJ2008 泡泡堂BNB Description 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表 队由n名选手组成,比赛 ...
- linux高性能服务器编程 (一) --Tcp/Ip协议族
前言: 在学习swoole入门基础的过程中,遇到了很多知识瓶颈,比方说多进程.多线程.以及进程池和线程池等都有诸多的疑惑.之前也有学习相关知识,但只是单纯的知识面了解.而没有真正的学习他们的来龙去脉. ...
- nginx重启 平滑重启
进入 ngiinx sbin目录下./nginx -c /usr/local/nginx/conf/nginx.conf -c参数指定了要加载的nginx配置文件路径 停止操作停止操作是通过向ngin ...
- 日期时间格式的工具DateUtils整理
关于一些时间工具的处理 * 描述:此类用于取得当前日期相对应的月初,月末,季初,季末,年初,年末,返回值均为String字符串 * 1.得到当前日期 today() * 2.得到当前月份月初 this ...
- 【转载】 【TensorFlow】static_rnn 和dynamic_rnn的区别
原文地址: https://blog.csdn.net/qq_20135597/article/details/88980975 ----------------------------------- ...