一、介绍
Newton和lagrange插值:给出一组数据进行Newton和lagrange插值,同时将结果用plot呈现出来
1、首先是Lagrange插值:
根据插值的方法,先对每次的结果求积,在对结果求和,完成插值。

2、newton插值:
先要建立差商表,差商表的建立的时候,每次减去的x[0]都是对角的元素,因此需要注意。

二、实现

import matplotlib.pyplot as plt
import math # =================================================== lagrange插值 =================================================================
def lagrange(x_, y, a):
"""
获取拉格朗日插值
:param x_: x的列表值
:param y: y的列表值
:param a: 需要插值的数
:return: 返回插值结果
"""
ans = 0.0
for i in range(len(y)):
t_ = y[i]
for j in range(len(y)):
if i != j:
t_ *= (a - x_[j]) / (x_[i] - x_[j])
ans += t_
return ans # =================================================== newton插值 =================================================================
def table(x_, y):
"""
获取牛顿插值表
:param x_: x列表的值
:param y: y列表的值
:return: 返回插值表
"""
quotient = [[0] * len(x_) for _ in range(len(x_))]
for n_ in range(len(x_)):
quotient[n_][0] = y[n_]
for i in range(1, len(x_)):
for j in range(i, len(x_)):
# j - i 确定了对角线的元素
quotient[j][i] = (quotient[j][i - 1] - quotient[j - 1][i - 1]) / (x_[j] - x_[j - i])
return quotient def get_corner(result):
"""
通过插值表获取对角线元素
:param result: 插值表的结果
:return: 对角线元素
"""
link = []
for i in range(len(result)):
link.append(result[i][i])
return link def newton(data_set, x_p, x_7):
"""
牛顿插值结果
:param data_set: 求解的问题的对角线
:param x_p: 输入的值
:param x_7: 原始的x的列表值
:return: 牛顿插值结果
"""
result = data_set[0]
for i in range(1, len(data_set)):
p = data_set[i]
for j in range(i):
p *= (x_p - x_7[j])
result += p
return result # ============================================================== 画图 =====================================================
def draw_picture(x_list, y_list, node):
plt.title("newton")
plt.xlabel("x")
plt.ylabel("y")
# plt.plot(x_list, y_list, color="red")
for i in range(len(x_list)):
plt.scatter(x_list[i], y_list[i], color="purple", linewidths=2)
plt.scatter(node[0], node[1], color="blue", linewidth=2)
plt.show() if __name__ == '__main__':
x = 0.54
x_1 = [0.4, 0.5, 0.6, 0.7, 0.8]
y_1 = [-0.9163, -0.6931, -0.5108, -0.3567, -0.2231]
middle = table(x_1, y_1)
n = get_corner(middle)
newton = newton(n, x, x_1)
lagrange = lagrange(x_1, y_1, 0.54)
print("真值:{}".format(math.log(0.54, math.e)))
print("拉格朗日插值:{}".format(lagrange))
print("牛顿插值:{}".format(newton))
# 画图
draw_picture(x_1, y_1, (x, newton))

三、结果
1、插值结果

2、画图结果

四、总结
Newton和lagrange可以参考一下数值分析的课本,根据课本的公式来进行插值分析。具体过程也在代码中给出。

Python实现Newton和lagrange插值的更多相关文章

  1. 转Python SciPy库——拟合与插值

    1.最小二乘拟合 实例1 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq p ...

  2. 【数值分析】Python实现Lagrange插值

    一直想把这几个插值公式用代码实现一下,今天闲着没事,尝试尝试. 先从最简单的拉格朗日插值开始!关于拉格朗日插值公式的基础知识就不赘述,百度上一搜一大堆. 基本思路是首先从文件读入给出的样本点,根据输入 ...

  3. Lagrange插值C++程序

    输入:插值节点数组.插值节点处的函数值数组,待求点 输出:函数值 代码如下:把printf的注释取消掉,能打印出中间计算过程,包括Lagrange多项式的求解,多项式每一项等等(代码多次修改,这些pr ...

  4. Note -「Lagrange 插值」学习笔记

    目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 ...

  5. 数值计算方法实验之Lagrange 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  6. Python数值计算之插值曲线拟合-01

        3 插值与曲线拟合 Interpolation and Curve Fitting 给定n+1个数据点(xi,yi), i = 0,1,2,…,n,评估y(x). 3.1 介绍(introdu ...

  7. 数值分析案例:Newton插值预测2019城市(Asian)温度、Crout求解城市等温性的因素系数

    数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 文章目录 数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温 ...

  8. Newton插值的C++实现

    Newton(牛顿)插值法具有递推性,这决定其性能要好于Lagrange(拉格朗日)插值法.其重点在于差商(Divided Difference)表的求解. 步骤1. 求解差商表,这里采用非递归法(看 ...

  9. 插值方法 - Newton向前向后等距插值

    通常我们在求插值节点的开头部分插值点附近函数值时,使用Newton前插公式:求插值节点的末尾部分插值点附近函数值时,使用Newton后插公式. 代码: 1 # -*- coding: utf-8 -* ...

随机推荐

  1. Chrome headless三种安装方法

    在使用chrome headless的时候,使用安装源有很多的依赖问题,提供三种方法,最简单的是使用一键安装脚本. 1.添加chrome源来安装chrome 添加源: ## 添加:vim /etc/y ...

  2. 【软件工程第三次作业】结对编程:四则运算( Java 实现)

    1. GitHub 地址 本项目由 莫少政(3117004667).余泽端(3117004679)结对完成. 项目 GitHub 地址:https://github.com/Yuzeduan/Arit ...

  3. 基于RGB与HSI颜色模型的图像提取法

    现实中我们要处理的往往是RGB彩色图像.对其主要通过HSI转换.分量色差等技术来提出目标. RGB分量灰度化: RGB可以分为R.G.B三分量.当R=G=B即为灰度图像,很多时候为了方便,会直接利用某 ...

  4. ORACLE ORION测试IO性能

    https://www.oracle.com/technetwork/cn/topics/index-088165-zhs.html 下载地址 Orion是Oracle提供的IO性能测试工具,运行该工 ...

  5. Python从零开始——运算符

  6. React源码 memo Fragment StrictMode cloneElement createFactory

    1.memo react 16.6 推出的 api ,他的用意是给 function component 也有 PureComponent 这样一个类似的功能,因为我们知道 PureComponent ...

  7. matplotlib 绘制正余弦曲线图

    1.普通风格 代码 import numpy as npimport matplotlib.pyplot as plt x = np.linspace(0, 2*np.pi, 50)y1 = np.s ...

  8. 3. 卷积神经网络(CNN)

    关于数据集的介绍 top-N正确率指的是图像识别算法给出前N个答案中有一个是正确的概率. 在图像识别方面,基于卷积神经网络的图像识别算法给图像识别问题带来了质的飞跃,从2013年之后,基本上所有的研究 ...

  9. Spring 整合 JPA

    spring 整合 jpa 客户的基本CRUD 依赖 <properties> <spring.version>4.2.4.RELEASE</spring.version ...

  10. Linux-grep,awk,sed

    grep 参考1:https://www.cnblogs.com/ITtangtang/p/3950497.html sed 参考:https://www.cnblogs.com/wangqiguo/ ...