取数游戏 game bzoj-1978 BeiJing-2010

题目大意:给定一个$n$个数的$a$序列,要求取出$k$个数。假设目前取出的数是$a_j$,那么下次取出的$a_k$必须保证:$j<k$且$gcd(a_j,a_k)/reL$。问最多能取出多少个数。

注释:$1\le n\le 5\cdot 10^4$,$2\le L \le a_i\le 10^6$。


想法

显然可以用动态规划解决。

状态:$dp_i$表示强制选第$i$个数,前$i$个数中最多能取多少个数。

转移是$O(n^2)$的。

接下来,我们思考:如何才能优化这个过程。

有一个性质:

假设存在$i<j<k$,使得$m|a_i,m|a_j,m|a_k,m\ge L$,那么我们选择用$j$更新$k$而不是$i$,原因在于$f_j$完全可以在$i$构成的序列中,后面加上$j$因为$gcd(a_i,a_j)\ge m\ge L$。

所以我们只需要更新出$lst$数组:$lst_i$表示枚举到当前的$a$,可以被$i$整除的最大的下标(时间戳)最大是多少。

接下来,我们既可以通过$lst$数组来更新$dp$数组。

具体地:每次我们枚举当前元素的时候,将当前元素质因数分解,动态更新$lst$数组。

如何更新$f$数组呢?

我们只需要将$lst$数组的值直接加到$f$上可。

总时间复杂度$O(n\sqrt n)$。

Code

#include <bits/stdc++.h>
#define N 50010
#define M 1000010
using namespace std;
int f[N],mx[M],a[N];
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
int main()
{
int n=rd(),L=rd(); for(int i=1;i<=n;i++) a[i]=rd();
for(int i=1;i<=n;i++)
{
int now=0;
for(int j=1;j*j<=a[i];j++)
{
if(a[i]%j==0)
{
if(j>=L) now=max(now,mx[j]);
if(j*j!=a[i])
{
if(a[i]/j>=L) now=max(now,mx[a[i]/j]);
}
}
}
f[i]=now+1;
for(int j=1;j*j<=a[i];j++)
{
if(a[i]%j==0)
{
if(j>=L) mx[j]=max(mx[j],f[i]);
if(j*j!=a[i])
{
if(a[i]/j>=L) mx[a[i]/j]=max(mx[a[i]/j],f[i]);
}
}
}
}
int ans=0; for(int i=1;i<=n;i++) ans=max(ans,f[i]);
printf("%d\n",ans);
return 0;
}

小结:优化$dp$的好题。

[bzoj1978][BeiJing2010]取数游戏 game_动态规划_质因数分解的更多相关文章

  1. BZOJ1978: [BeiJing2010]取数游戏 game

    1978: [BeiJing2010]取数游戏 game Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 650  Solved: 400[Submit] ...

  2. BZOJ 1978: [BeiJing2010]取数游戏 game( dp )

    dp(x)表示前x个的最大值,  Max(x)表示含有因数x的dp最大值. 然后对第x个数a[x], 分解质因数然后dp(x) = max{Max(t)} + 1, t是x的因数且t>=L -- ...

  3. P4411&&BZOJ1978 [BJWC2010]取数游戏(动态规划dp)

    P4411 一道dp f[i]表示一定选第i个数的条件下前i个数所能得到的最优值 last[i]表示质因数i在数列a中最后出现时的下标 状态转移方程为\(f[i]=max\{f[last[j]\:|\ ...

  4. P1005 矩阵取数游戏(动态规划+高精度)

    题目链接:传送门 题目大意: 给定长度为m的数列aj,每次从两端取一个数,得到2k * aj的价值(k为当前的次数,从1开始到m),总共有n行这样的数列,求最大价值总和. 1 ≤ n, m ≤ 80, ...

  5. 矩阵取数游戏 NOIP 2007

    2016-05-31 17:26:45 题目链接: NOIP 2007 矩阵取数游戏(Codevs) 题目大意: 给定一个矩阵,每次在每一行的行首或者行尾取一个数乘上2^次数,求取完最多获得的分数 解 ...

  6. 1166 矩阵取数游戏[区间dp+高精度]

    1166 矩阵取数游戏 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description [ ...

  7. NOIP2007 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  8. 洛谷 P1005 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  9. COJ 0501 取数游戏(TPM)

    取数游戏(TPM) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取 ...

随机推荐

  1. SSM Note

    1.获取项目的绝对路径:${pageContext.request.contextPath } 2.销毁session:session.invalidate(); 3.控制器接收前端参数时,参数名要与 ...

  2. 谷歌的 I/O 2019,究竟推出了什么新特性?

    前言 昨天,也即赶在微软 Build 2019 的第二天,一年一度的2019年 Google I/O大会在美国如期举行,Google I/O 2019全纪录:AI惊艳,Android Q真香,包括两款 ...

  3. 纯CSS写的对勾样式

    & .cicle{          position: relative;          float: right;          margin-right: -1rem;      ...

  4. [Tunny]CSS LESS框架基础

    [黄映焜/Tunny,20140711] Less 是一个Css 预编译器,意思指的是它可以扩展Css语言,添加功能如允许变量(variables),混合(mixins),函数(functions) ...

  5. Android(java)学习笔记193:ContentProvider使用之获得系统联系人信息01

    1.系统联系人的数据库(3张最重要的表) (1)raw_contacts  联系人表        保存联系人的id   contact_id (2)data 数据表       保存联系人的数据 ( ...

  6. chpasswd - 成批更新用户的口令

    总览 chpasswd [-e] 描述 chpasswd 从系统的标准输入读入用户的名称和口令,并利用这些信息来更新系统上已存在的用户的口令.在没有用 -e 这个开关选项的情况下,口令将按明文的形式接 ...

  7. Go语言 之md5加密

    //方式一 func getMd5String1(str string) string { m := md5.New() _, err := io.WriteString(m, str) if err ...

  8. 手动配置webpack

    //注:“__dirname”是node.js中的一个全局变量,它指向当前执行脚本所在的目录.const path = require('path');const webpack = require( ...

  9. webpack的详细介绍和使用

    // 一个常见的`webpack`配置文件 const webpack = require('webpack'); const HtmlWebpackPlugin = require('html-we ...

  10. JavaScipt30(第二十二个案例)(主要知识点:getBoundingClientRect)

    这是第二十二个案例,这个例子实现的是鼠标移入a标签时,将其高亮. 附上项目链接: https://github.com/wesbos/JavaScript30 以下为注释后的源码: <scrip ...