bzoj Strange Way to Express Integers【excrt】
其实我没看懂题不如说根本没看……都说是excrt板子那就写个板子吧
注意开long long
#include<iostream>
#include<cstdio>
using namespace std;
const long long N=100005;
long long n,r[N],m[N];
void exgcd(long long a,long long b,long long &d,long long &x,long long &y)
{
if(b==0)
{
d=a,x=1,y=0;
return;
}
exgcd(b,a%b,d,y,x);
y-=a/b*x;
}
long long excrt()
{
long long M=m[1],R=r[1],x,y,d;
for(long long i=2;i<=n;i++)
{
exgcd(M,m[i],d,x,y);
if((r[i]-R)%d)
return -1;
x=(r[i]-R)/d*x%(m[i]/d);
R=R+x*M;
M=M/d*m[i];
R%=M;
}
return R>0?R:R+M;
}
int main()
{
while(~scanf("%lld",&n))
{
for(long long i=1;i<=n;i++)
scanf("%lld%lld",&m[i],&r[i]);
printf("%lld\n",excrt());
}
return 0;
}
bzoj Strange Way to Express Integers【excrt】的更多相关文章
- 「POJ2891」Strange Way to Express Integers【数学归纳法,扩展中国剩余定理】
题目链接 [VJ传送门] 题目描述 给你\(a_1...a_n\)和\(m_1...m_n\),求一个最小的正整数\(x\),满足\(\forall i\in[1,n] \equiv a_i(mod ...
- POJ2891 Strange Way to Express Integers【扩展中国剩余定理】
题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...
- POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】
求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...
- poj 2891 Strange Way to Express Integers【扩展中国剩余定理】
扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...
- 一本通1635【例 5】Strange Way to Express Integers
1635:[例 5]Strange Way to Express Integers sol:貌似就是曹冲养猪的加强版,初看感觉非常没有思路,经过一番艰辛的***,得到以下的结果 随便解释下给以后的自己 ...
- 【POJ2891】Strange Way to Express Integers(拓展CRT)
[POJ2891]Strange Way to Express Integers(拓展CRT) 题面 Vjudge 板子题. 题解 拓展\(CRT\)模板题. #include<iostream ...
- POJ2891 Strange Way to Express Integers
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...
- poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 9472 ...
- POJ2891——Strange Way to Express Integers(模线性方程组)
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...
随机推荐
- 三菱PLC FB库函数调用方法 (Gx Work2版本)
本文以 GxWorks2 软件为例 1.新建使用标签项目的工程文件 2.从其它库所在工程项目中导入库 3.选择库文件及FB功能块 4.插入FB功能块调用
- python之更加抽象 2014-4-6
#更加抽象 12:50pm- 14:50 p112- 1.对象的魔力 多态 如count 在多种数据类型中都可以实现计数的功能 封装 对全局作用域中其他区域隐藏多余信息的原则 继承2.类和类型 创建类 ...
- C51 独立按键 个人笔记
独立按键类似于一个开关,按下时开关闭合 防抖 硬件防抖 软件防抖 通过延时,滤掉抖动的部分 电路图 普中科技的开发板,独立按键电路图如下 判断按键按下 因此判断是否按下开关的方法是看引脚是否为低电平( ...
- CodeForcesGym 100524A Astronomy Problem
Astronomy Problem Time Limit: 8000ms Memory Limit: 524288KB This problem will be judged on CodeForce ...
- SOJ 2818_QQ音速
[题意]两只手,一次只能用一只手按一个键子(0,1,2,3),给出从i键到j键所需的消耗的体力,求依次按下一系列键子所需最小体力. [分析] 法一:开一个三维数组,分别记录移动到位置及左右手按的键子. ...
- Minimum Path Sum(DFS,DP)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- Ubuntu 16.04安装unrar解压RAR文件
除了7zip:http://www.cnblogs.com/EasonJim/p/7124306.html之外,还可以安装unrar进行解压RAR文件. 安装 sudo apt-get install ...
- Java正则表达式过滤出字母、数字和中文
原文:http://blog.csdn.net/k21325/article/details/54090066 1.Java中过滤出字母.数字和中文的正则表达式 (1)过滤出字母的正则表达式 [^(A ...
- Kinect驱动的人脸实时动画
近期几年.realtime的人脸动画開始风声水起.不少图形图像的研究者開始在这个领域不断的在顶级会议siggraph和期刊tog上面发文章. 随着kinect等便宜的三维数据採集设备的运用.以及其功能 ...
- Django打造大型企业官网(六)
4.9.根据轮播图个数修改小圆点数量 src/js/index.js function Banner() { this.bannerWidth = 798; } Banner.prototype.in ...