bzoj Strange Way to Express Integers【excrt】
其实我没看懂题不如说根本没看……都说是excrt板子那就写个板子吧
注意开long long
#include<iostream>
#include<cstdio>
using namespace std;
const long long N=100005;
long long n,r[N],m[N];
void exgcd(long long a,long long b,long long &d,long long &x,long long &y)
{
if(b==0)
{
d=a,x=1,y=0;
return;
}
exgcd(b,a%b,d,y,x);
y-=a/b*x;
}
long long excrt()
{
long long M=m[1],R=r[1],x,y,d;
for(long long i=2;i<=n;i++)
{
exgcd(M,m[i],d,x,y);
if((r[i]-R)%d)
return -1;
x=(r[i]-R)/d*x%(m[i]/d);
R=R+x*M;
M=M/d*m[i];
R%=M;
}
return R>0?R:R+M;
}
int main()
{
while(~scanf("%lld",&n))
{
for(long long i=1;i<=n;i++)
scanf("%lld%lld",&m[i],&r[i]);
printf("%lld\n",excrt());
}
return 0;
}
bzoj Strange Way to Express Integers【excrt】的更多相关文章
- 「POJ2891」Strange Way to Express Integers【数学归纳法,扩展中国剩余定理】
题目链接 [VJ传送门] 题目描述 给你\(a_1...a_n\)和\(m_1...m_n\),求一个最小的正整数\(x\),满足\(\forall i\in[1,n] \equiv a_i(mod ...
- POJ2891 Strange Way to Express Integers【扩展中国剩余定理】
题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...
- POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】
求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...
- poj 2891 Strange Way to Express Integers【扩展中国剩余定理】
扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...
- 一本通1635【例 5】Strange Way to Express Integers
1635:[例 5]Strange Way to Express Integers sol:貌似就是曹冲养猪的加强版,初看感觉非常没有思路,经过一番艰辛的***,得到以下的结果 随便解释下给以后的自己 ...
- 【POJ2891】Strange Way to Express Integers(拓展CRT)
[POJ2891]Strange Way to Express Integers(拓展CRT) 题面 Vjudge 板子题. 题解 拓展\(CRT\)模板题. #include<iostream ...
- POJ2891 Strange Way to Express Integers
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...
- poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 9472 ...
- POJ2891——Strange Way to Express Integers(模线性方程组)
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...
随机推荐
- 51中xdata,idata,data,pdata的区别
51系列中data,idata,xdata,pdata的区别 data: 固定指前面0x00-0x7f的128个RAM,可以用acc直接读写的,速度最快,生成的代码也最小. idata: 固定指前面0 ...
- 32道常见的Java基础面试题
1. 什么是 Java 虚拟机(JVM)?为什么 Java 被称作是“平台无关的编程语言”? Java 虚拟机是一个可以执行 Java 字节码的虚拟机进程.Java 源文件被编译成能被 Java 虚拟 ...
- MVC系统学习7—Action的选择过程
在Mvc源码的ControllerActionInvoker的InvokeAction方法里面有一个FindAction方法,FindAction方法在ControllerDescriptor里面定义 ...
- Chrome new features
Chrome new features copy fetch url fetch("http://10.1.5.202/deploy/http/send/svnuser", { & ...
- Linux下汇编语言学习笔记45 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...
- Perfect Service UVA - 1218
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #inclu ...
- Delphi:Indy9的IdFTP完全使用
Delphi 7自带的INDY控件,其中包含了IdFTP,可以方便的实现FTP客户端程序,参考自带的例子,其中有上传.下载.删除文件,但是不包含对文件夹的操作,得自己实现上传.下载.删除整个文件夹(带 ...
- Linux 攻击防护基础排查
作者:Zzang 来源:cnblogs 原文:https://www.cnblogs.com/Zzang/p/LinuxHack.html 版权声明:本文为博主原创文章,转载请附上博文链接! 基本网络 ...
- Ext-js使用指南(总结)
一.获取元素(Getting Elements) 1.Ext.get var el = Ext.get('myElementId');//获取元素,等同于document.getElementById ...
- dtrace-conf 2016
https://www.joyent.com/about/events/2016/dtrace-conf