(Problem 28)Number spiral diagonals
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows:
21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13
It can be verified that the sum of the numbers on the diagonals is 101.
What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way?
原题大意:
从数字1开始向右顺时针方向移动,可以得到如下的5×5的螺旋:
21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13
可以算出对角线上数字之和是101. 1001×1001的螺旋中对角线上数字之和是多少?
//(Problem 28)Number spiral diagonals
// Completed on Thu, 25 Jul 2013, 14:31
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/ #include<stdio.h>
void countSum()
{
int i=;
int sum=;
int n=(+)/-;
while(n--)
{
int t=i*i;
sum+=(*t-(i-)*);
i=i+;
}
printf("%d\n",sum);
} int main()
{
countSum();
return ;
}
|
Answer:
|
669171001 |
(Problem 28)Number spiral diagonals的更多相关文章
- (Problem 17)Number letter counts
If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
- (Problem 37)Truncatable primes
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...
- (Problem 36)Double-base palindromes
The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all num ...
随机推荐
- 深入浅出Win32多线程程序设计之基本概念
一.深入浅出Win32多线程程序设计之基本概念[转] 引言 从单进程单线程到多进程多线程是操作系统发展的一种必然趋势,当年的DOS系统属于单任务操作系统,最优秀的程序员也只能通过驻留内存的方式实现所谓 ...
- HDU 4983 Goffi and GCD
题目大意:给你N和K,问有多少个数对满足gcd(N-A,N)*gcd(N-B,N)=N^K.题解:由于 gcd(a, N) <= N,于是 K>2 都是无解,K=2 只有一个解 A=B=N ...
- android之获取应用中的图片资源_获取找你妹中的图片资源
一直不知道原来获取一个应用中的图片资源这么简单,刚才直接把apk解压,就得到了里面的一下文件,搜索一下就全部把图片资源找出来了,想要模仿应用或者自己不会ui的话,用现成的资源方便多了. 也没多少说的, ...
- java.lang.NoClassDefFoundError: javax/servlet/AsyncContext
报错:java.lang.NoClassDefFoundError: javax/servlet/AsyncContext 我认为你需要在Servlet API,而不是2.5.AsyncContext ...
- Python输出中文乱码问题
//建立一个文件test.txt,文件格式用ANSI,内容为: //abc中文 //用python来读取 # coding=gbk print open("Test.txt").r ...
- 【Android界面实现】信息更新小红点显示——自己定义控件BadgeView的使用介绍
在如今大部分的信息公布类应用,都有这样的一个功能:当后台数据更新,比方有系统消息或者是用户间有互动的时候,通过在控件上显示一个小红点来提示用户有新的信息.一般来说,这样的业务需求,我们能够在布局文件里 ...
- 我的IOS学习之路(三):手势识别器
在iOS的学习中,对于手势的处理是极为重要的,如对于图片,我们经常需要进行旋转,缩放以及移动等.这里做一下总结,详见代码. - (void)viewDidLoad { [super viewDidLo ...
- Spring配置机制的优缺点 - Annotation vs XML
转自 http://tianzongqi.iteye.com/blog/1458002 XML配置的优缺点: 优点: XML配置方式进一步降低了耦合,使得应用更加容易扩展,即使对配置文件进一步修改也不 ...
- gridview回顾
第一看asp.net是在做项目之前,感觉收获也很大,第二次看gridview是在做完项目之后对GridView的回顾,这次的感觉是:我需要多想点,知识直到用时方觉少.直入正题吧,看gridview. ...
- [LeetCode]题解(python):131-Palindrome Partitioning
题目来源: https://leetcode.com/problems/palindrome-partitioning/ 题意分析: 给定一个字符串s,将s拆成若干个子字符串,使得所有的子字符串都是回 ...