http://blog.csdn.net/carrierlxksuper/article/details/48918297

传统的跟踪方法依赖低维的人工特征,但这种特征对目标的外观变化等问题不够鲁棒。

与此相比,CNN从大量的数据中能够学到高级的信息,有较强的分类能力,这些特征有较好的泛化能力。

如果直接用CNN来跟踪的话,需要大量的数据来进行训练,这显然不合适。之前有人用DNN做在线跟踪并取得了不错的效果,但这个过程中,DNN被当做黑盒子来用。这篇文章从跟踪的角度研究了CNN特征的性质,发现了两个重要的性质:

首先,不同深度的CNN特征在跟踪时有不同的性质。顶层的卷积层获得了更抽象更高级的特征,这些特征能更好的区分不同种类的物体,处理形变遮挡时也更加鲁棒。

但如果是同类物体,这些特征的区分度并不好。更低卷积层提供了更细节的局部特征,这些特征能将具有相似外观的同类物体更好的区分开来。但在物体有较大形变时不够鲁棒。基于此,本文提出自动切换高低层进行跟踪。

其次,CNN的特征是从ImageNet上提前训练来区分物体的,但对于特定的物体来说,并不是所有特征都是有用于跟踪的,有些特征会被当做noise。如果把所有的特征图都用上的话,很难将目标与背景进行区分。可以通过特征选择来丢掉noise 特征,那么该如何进行特征选择呢?

这篇论文的主要贡献有:

1)分析CNN从大规模图像分类中学到的特征,找到适用于跟踪的那些特征。这有助于更好的理解CNN特征和设计适用于跟踪的特征。

2)提出新的跟踪方法,使用两层卷积网络,可以更好的处理物体形变和区分目标与背景。

3)提出能自动选择特征的方法,提高跟踪精度。

用于跟踪的深度特征分析

      分析是基于16层的VGG网络的,VGG是在ImageNet上已经训练好的。其中有13个卷积层跟着3个全连接层。

分析1 尽管CNN特征图的感受野很大,激活特征图是稀疏并且局部的,激活区域和目标区域高度相关。

从图上可以看出特征图只有少量非0值,这些非0值是位置确定的且与目标区域有关。还得到了CNN 特征的语义图,语义图表明,输入的改变,导致目标区域的所选特征图大幅增长。因此,这些特征map获得了目标的可视化描述。这就表明,DNN学到的特征是有位置的且与目标相关的,因此,CNN的特征可用于确定目标位置。

分析2 很多CNN特征是noisy,或者与将目标与背景区分无关

用ImageNet训练的CNN特征能描述大量的目标,但当跟踪时,应当只关注小部分的目标,只需将目标与背景区分即可,这就要求我们选择好的特征。

分析3 不同层编码不同的特征,高层获得目标种类的语义概念,低层编码更多的区分特征来获得内部的种类变化。 

      因为特征图有大量冗余,故采用一种稀疏表示框架来更好的可视化。

Visual Tracking with Fully Convolutional Networks的更多相关文章

  1. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  2. 论文笔记:SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks

    SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 2019-04-02 12:44:36 Paper:ht ...

  3. 中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks

    R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标 ...

  4. Fully Convolutional Networks for Semantic Segmentation 译文

    Fully Convolutional Networks for Semantic Segmentation 译文 Abstract   Convolutional networks are powe ...

  5. 论文阅读(Xiang Bai——【CVPR2016】Multi-Oriented Text Detection with Fully Convolutional Networks)

    Xiang Bai--[CVPR2016]Multi-Oriented Text Detection with Fully Convolutional Networks 目录 作者和相关链接 方法概括 ...

  6. 论文学习:Fully Convolutional Networks for Semantic Segmentation

    发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通 ...

  7. 『计算机视觉』R-FCN:Object Detection via Region-based Fully Convolutional Networks

    一.网络介绍 参考文章:R-FCN详解 论文地址:Object Detection via Region-based Fully Convolutional Networks R-FCN是Faster ...

  8. 【Semantic Segmentation】 Instance-sensitive Fully Convolutional Networks论文解析(转)

    这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇pape ...

  9. 【Detection】R-FCN: Object Detection via Region-based Fully Convolutional Networks论文分析

    目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive ...

随机推荐

  1. ZJOI 2017 day2 4.27

    明天就要比赛啦,今天早点休息. 既然是随便扯,首先就是yyzx的wifi(宁波的这种wifi系统我第一次见,要打开任意一个浏览器,才能跳出界面,网还是挺快的) 上午是学车的翁伊嘉&猪猪侠讲课, ...

  2. 服务器版“永恒之蓝”高危预警 (Samba远程命令执行漏洞CVE-2017-7494) 攻击演示

    漏洞信息: 2017年5月24日Samba发布了4.6.4版本,中间修复了一个严重的远程代码执行漏洞,漏洞编号CVE-2017-7494,漏洞影响了Samba 3.5.0 之后到4.6.4/4.5.1 ...

  3. 【bzoj3567】江南乐

    Portal -->bzoj3567 Solution ​  今天开始啃博弈论了qwq ​  先mark一篇很棒的博客Portal -->博弈论学习资料 ​​  稍微总结一下两个自己容易混 ...

  4. oracle 时间

    select to_char(to_date(sysdate,'yyyy-mm-dd'),'day') from dual; select to_date('2017-12-31','day') fr ...

  5. MySQL 语句中执行优先级——and比or高

    转: MySQL 语句中执行优先级——and比or高 2017年04月20日 13:33:03 十步行 阅读数:7381   版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...

  6. HDU 4584 splay

    Shaolin Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  7. 「Python」7个不一样的代码写法

    打印index 对于一个列表,或者说一个序列我们经常需要打印它的index,一般传统的做法或者说比较low的写法: 更优雅的写法是多用enumerate 两个序列的循环 我们会经常对两个序列进行计算或 ...

  8. z-index详细攻略

    概念 z-index 属性设置元素的堆叠顺序.拥有更高堆叠顺序的元素总是会处于堆叠顺序较低的元素的前面. 层级关系的比较 1. 对于同级元素,默认(或position:static)情况下文档流后面的 ...

  9. 2017北京国庆刷题Day7 afternoon

    期望得分:100+30+100=230 实际得分:60+30+100=190 排序去重 固定右端点,左端点单调不减 考场上用了二分,没去重,60 #include<cstdio> #inc ...

  10. 周末发福利了!26个免费的HTML5模版

    本期文章我们为大家搜集了很多专业且高质量的HTML5模版,而且还是免费的呦.如果你对编码很熟悉,那么从这些网站里你可以学到很多新技能.来这些国际范的案例中挑选您喜欢的模版学习起来吧:) Zeences ...