Visual Tracking with Fully Convolutional Networks
http://blog.csdn.net/carrierlxksuper/article/details/48918297
传统的跟踪方法依赖低维的人工特征,但这种特征对目标的外观变化等问题不够鲁棒。
与此相比,CNN从大量的数据中能够学到高级的信息,有较强的分类能力,这些特征有较好的泛化能力。
如果直接用CNN来跟踪的话,需要大量的数据来进行训练,这显然不合适。之前有人用DNN做在线跟踪并取得了不错的效果,但这个过程中,DNN被当做黑盒子来用。这篇文章从跟踪的角度研究了CNN特征的性质,发现了两个重要的性质:
首先,不同深度的CNN特征在跟踪时有不同的性质。顶层的卷积层获得了更抽象更高级的特征,这些特征能更好的区分不同种类的物体,处理形变遮挡时也更加鲁棒。
但如果是同类物体,这些特征的区分度并不好。更低卷积层提供了更细节的局部特征,这些特征能将具有相似外观的同类物体更好的区分开来。但在物体有较大形变时不够鲁棒。基于此,本文提出自动切换高低层进行跟踪。
其次,CNN的特征是从ImageNet上提前训练来区分物体的,但对于特定的物体来说,并不是所有特征都是有用于跟踪的,有些特征会被当做noise。如果把所有的特征图都用上的话,很难将目标与背景进行区分。可以通过特征选择来丢掉noise 特征,那么该如何进行特征选择呢?
这篇论文的主要贡献有:
1)分析CNN从大规模图像分类中学到的特征,找到适用于跟踪的那些特征。这有助于更好的理解CNN特征和设计适用于跟踪的特征。
2)提出新的跟踪方法,使用两层卷积网络,可以更好的处理物体形变和区分目标与背景。
3)提出能自动选择特征的方法,提高跟踪精度。
用于跟踪的深度特征分析
分析是基于16层的VGG网络的,VGG是在ImageNet上已经训练好的。其中有13个卷积层跟着3个全连接层。
分析1 尽管CNN特征图的感受野很大,激活特征图是稀疏并且局部的,激活区域和目标区域高度相关。
从图上可以看出特征图只有少量非0值,这些非0值是位置确定的且与目标区域有关。还得到了CNN 特征的语义图,语义图表明,输入的改变,导致目标区域的所选特征图大幅增长。因此,这些特征map获得了目标的可视化描述。这就表明,DNN学到的特征是有位置的且与目标相关的,因此,CNN的特征可用于确定目标位置。
分析2 很多CNN特征是noisy,或者与将目标与背景区分无关
用ImageNet训练的CNN特征能描述大量的目标,但当跟踪时,应当只关注小部分的目标,只需将目标与背景区分即可,这就要求我们选择好的特征。
分析3 不同层编码不同的特征,高层获得目标种类的语义概念,低层编码更多的区分特征来获得内部的种类变化。
因为特征图有大量冗余,故采用一种稀疏表示框架来更好的可视化。
Visual Tracking with Fully Convolutional Networks的更多相关文章
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- 论文笔记:SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks
SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 2019-04-02 12:44:36 Paper:ht ...
- 中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks
R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标 ...
- Fully Convolutional Networks for Semantic Segmentation 译文
Fully Convolutional Networks for Semantic Segmentation 译文 Abstract Convolutional networks are powe ...
- 论文阅读(Xiang Bai——【CVPR2016】Multi-Oriented Text Detection with Fully Convolutional Networks)
Xiang Bai--[CVPR2016]Multi-Oriented Text Detection with Fully Convolutional Networks 目录 作者和相关链接 方法概括 ...
- 论文学习:Fully Convolutional Networks for Semantic Segmentation
发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通 ...
- 『计算机视觉』R-FCN:Object Detection via Region-based Fully Convolutional Networks
一.网络介绍 参考文章:R-FCN详解 论文地址:Object Detection via Region-based Fully Convolutional Networks R-FCN是Faster ...
- 【Semantic Segmentation】 Instance-sensitive Fully Convolutional Networks论文解析(转)
这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇pape ...
- 【Detection】R-FCN: Object Detection via Region-based Fully Convolutional Networks论文分析
目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive ...
随机推荐
- ZJOI 2017 day2 4.27
明天就要比赛啦,今天早点休息. 既然是随便扯,首先就是yyzx的wifi(宁波的这种wifi系统我第一次见,要打开任意一个浏览器,才能跳出界面,网还是挺快的) 上午是学车的翁伊嘉&猪猪侠讲课, ...
- 服务器版“永恒之蓝”高危预警 (Samba远程命令执行漏洞CVE-2017-7494) 攻击演示
漏洞信息: 2017年5月24日Samba发布了4.6.4版本,中间修复了一个严重的远程代码执行漏洞,漏洞编号CVE-2017-7494,漏洞影响了Samba 3.5.0 之后到4.6.4/4.5.1 ...
- 【bzoj3567】江南乐
Portal -->bzoj3567 Solution 今天开始啃博弈论了qwq 先mark一篇很棒的博客Portal -->博弈论学习资料 稍微总结一下两个自己容易混 ...
- oracle 时间
select to_char(to_date(sysdate,'yyyy-mm-dd'),'day') from dual; select to_date('2017-12-31','day') fr ...
- MySQL 语句中执行优先级——and比or高
转: MySQL 语句中执行优先级——and比or高 2017年04月20日 13:33:03 十步行 阅读数:7381 版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...
- HDU 4584 splay
Shaolin Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 「Python」7个不一样的代码写法
打印index 对于一个列表,或者说一个序列我们经常需要打印它的index,一般传统的做法或者说比较low的写法: 更优雅的写法是多用enumerate 两个序列的循环 我们会经常对两个序列进行计算或 ...
- z-index详细攻略
概念 z-index 属性设置元素的堆叠顺序.拥有更高堆叠顺序的元素总是会处于堆叠顺序较低的元素的前面. 层级关系的比较 1. 对于同级元素,默认(或position:static)情况下文档流后面的 ...
- 2017北京国庆刷题Day7 afternoon
期望得分:100+30+100=230 实际得分:60+30+100=190 排序去重 固定右端点,左端点单调不减 考场上用了二分,没去重,60 #include<cstdio> #inc ...
- 周末发福利了!26个免费的HTML5模版
本期文章我们为大家搜集了很多专业且高质量的HTML5模版,而且还是免费的呦.如果你对编码很熟悉,那么从这些网站里你可以学到很多新技能.来这些国际范的案例中挑选您喜欢的模版学习起来吧:) Zeences ...