「NOIP 2013」 货车运输
题目链接
\(Solution\)
这一道题直接用\(kruskal\)重构树就好了,这里就不详细解释\(kruskal\)重构树了,如果不会直接去网上搜就好了.接下来讲讲详细过程.
- 首先构建\(kruskal\)重构树.
- 对于询问直接求\(lca\)就可以了,如果没有\(lca\)输出\(-1\),否则输入\(lca\)上的权值就好了,不是很难.
\(Code\)
#include<bits/stdc++.h>
using namespace std;
const int N=200011;
int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
struct node1 {
int to,next;
}e[500001];
struct node{
int x,y,v;
}b[N];
int res,cnt,n,m,t,pre[N],head[N],vis[N];
int f[N][21],dep[N],val[N],bin[101];
void add(int x,int y){ e[++cnt].to=y,e[cnt].next=head[x],head[x]=cnt; }
int find(int x){ return pre[x]==x?x:pre[x]=find(pre[x]); }
bool cmp(const node & a , const node & b ){ return a.v>b.v; }
void dfs(int k){
vis[k]=1;
for(int j=1;j<=19;j++)
f[k][j]=f[f[k][j-1]][j-1];
for(int i=head[k];i;i=e[i].next){
int v=e[i].to;
f[v][0]=k,dep[v]=dep[k]+1;
dfs(v);
}
}
int lca(int x,int y){
if(dep[x]<dep[y])
swap(x,y);
// cout<<dep[x]<<" "<<dep[y];
for(int i=19;i>=0;i--)
if(dep[x]-(1<<i)>=dep[y])
x=f[x][i];
if(x==y)
return y;
for(int i=19;i>=0;i--){
if(f[x][i]==f[y][i]||!f[y][i]||!f[x][i])
continue;
x=f[x][i],y=f[y][i];
}
return f[x][0];
}
void build(){
res=n,sort(b+1,b+1+m,cmp);
for(int i=1;i<=m;i++){
int fx=find(b[i].x),fy=find(b[i].y);
if(fx!=fy)
val[++res]=b[i].v,pre[fx]=res,pre[fy]=res,add(res,fx),add(res,fy);
if(res==n*2-1)
break;
}
}
int main(){
n=read(),m=read(),bin[1]=0;
for(int i=1;i<n*2;i++) pre[i]=i;
for(int i=1;i<=19;i++) bin[i]=bin[i-1]<<1;
for(int i=1;i<=m;i++) b[i].x=read(),b[i].y=read(),b[i].v=read();
build();
for(int i=1;i<=n;i++)
if(!vis[i])
dfs(find(i));
t=read();
while(t--){
int x=read(),y=read();
int p=lca(x,y);
// cout<<find(x)<<" "<<find(y)<<endl;
if(p==0)
cout<<"-1\n";
else
cout<<val[p]<<endl;
}
}
「NOIP 2013」 货车运输的更多相关文章
- [Noip 2013 Day1-3] 货车运输 做法总结
[Noip 2013 Day1-3] 货车运输 做法总结 Online Judge:Luogu-1967 Label:启发式合并,离线,整体二分,按秩合并,倍增,最大生成树 打模拟离线赛时做到,顺便总 ...
- NOIP 2013 P1967 货车运输
倍增求LCA+最大生成树 题目给出的是一张图,在图上有很多算法无法实现,所以要将其转化为树 题中可以发现货车的最后的载重量是由权值最小的一条边决定的,所以我们求最大生成树 求完最大生成树后我们得到一个 ...
- 「NOIP 2017」列队
题目大意:给定一个 $n times m$ 的方阵,初始时第 $i$ 行第 $j$ 列的人的编号为 $(i-1) times m + j$,$q$ 次给出 $x,y$,让第 $x$ 行 $y$ 列的人 ...
- 「NOIP 2020」微信步数(计数)
「NOIP 2020」微信步数(Luogu P7116) 题意: 有一个 \(k\) 维场地,第 \(i\) 维宽为 \(w_i\),即第 \(i\) 维的合法坐标为 \(1, 2, \cdots, ...
- 「NOIP2013」「LuoguP1967」货车运输(最大生成树 倍增 LCA
题目描述 AA国有nn座城市,编号从 11到nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最 ...
- 「NOIP2013」货车运输
传送门 Luogu 解题思路 首先 \(\text{Kruskal}\) 一下,构造出一棵森林. 并查集还要用来判断连通性. 倍增 \(\text{LCA}\) 的时候顺便维护一下路径最小值即可. 细 ...
- 「HNOI 2013」游走
题目链接 戳我 \(Solution\) 首先申明几个变量: f[x]:到点x的概率, vis[x]:x点的度 dp[x][y]:(x,y)这条边的概率 number[x][y]:x这条边的编号 下面 ...
- 「HNOI 2013」比赛
题目链接 戳我 \(Solution\) 这道题观察数据范围发现很小,再看看题目可以发现是搜索. 这题纯搜索会\(T\)所以要加入适当剪枝 如果一个人后面的比赛都赢却依旧到不了目标分数,则直接\(re ...
- 「HNOI 2013」消毒
题目链接 戳我 \(Solution\) 我们首先想一想如果这一题只是二维的该怎么办? 就是一个最小点覆盖问题.这里就不详细解释了,用网络流或匈牙利都无所谓. 但现在是三维的,那么现在该如何处理呢? ...
随机推荐
- Spring 学习记录4 ResourceLoader
ResourceLoader Spring的ApplicationContext继承了ResourceLoader接口.这个接口主要就是可以加载各种resource.. 接口还是比较简单的: /* * ...
- 如何有效地学习《空中英语教室》&《彭蒙惠英语》
读者定位: <大家说英语>是学习美式口语入门书,内容全部是情境会话,定位为“初级美式生活会话”. <空中英语教室>以浅显英语提供从新闻.旅游到时尚等流行话题,丰富会话材料,定位 ...
- powerdesigner 数据库表定义导出到excel
shift+ctrl+X,打开脚本运行,脚本如下:'************************************************************************** ...
- 索引(index)
#创建索引 create index index_name_pass on student(name,pass); create index index_name_id on student(name ...
- js引用类型赋值,深拷贝与浅拷贝
JS中引用类型使用等号“=” 赋值,相当于把原来对象的地址拷贝一份给新的对象,这样原来旧的对象与新的对象就指向同一个地址,改变其中一个对象就会影响另外那个对象,也就是所谓的浅拷贝.例如: var ar ...
- Excel VBA入门(七)注释、宏按钮及错误处理
系统性的知识前面已经讲完,从本章开始,本系列教程涉及的将会是一些相对凌散的内容. 1. 注释 代码注释是一件利人利己的事,为了方便自己在代码需要更新修改时,依然能够快速地看懂自己完的每一行代码到底是什 ...
- Git 将本地代码推到 Coding 远程仓库
1 首先创建文件夹,将要推的项目文件夹拷贝过来,进入文件夹 右键 Git Bash Here 输入以下代码 把这个目录变成git管理的仓库 git init 2 把文件添加到版本库中,使用命令 git ...
- MAC命令大全
OSX 的文件系统 OSX 采用的Unix文件系统,所有文件都挂在跟目录 / 下面,所以不在要有Windows 下的盘符概念. 你在桌面上看到的硬盘都挂在 /Volumes 下. 比如接上个叫做 ...
- DBArtist之Oracle入门第4步: Oracle创建数据库
刚开始进去后,我是懵逼的状态,不知道要干嘛,之前常用的是MSSQL,感觉两者还是有区别的: oracle中:1.查询数据库名:select name,dbid from v$database;或者sh ...
- SpringBoot与Shiro的整合(单体式项目)
1.包结构 2.jar包,配置文件,类 2.1pom.xml文件配置 <?xml version="1.0" encoding="UTF-8"?> ...