BZOJ4820 Sdoi2017 硬币游戏


Description

周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利。大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了。同学们觉得要加强趣味性,所以要找一个同学扔很多很多次硬币,其他同学记录下正反面情况。用H表示正面朝上,用T表示反面朝上,扔很多次硬币后,会得到一个硬币序列。比如HTT表示第一次正面朝上,后两次反面朝上。但扔到什么时候停止呢?大家提议,选出n个同学,每个同学猜一个长度为m的序列,当某一个同学猜的序列在硬币序列中出现时,就不再扔硬币了,并且这个同学胜利,为了保证只有一个同学胜利,同学们猜的n个序列两两不同。很快,n个同学猜好序列,然后进入了紧张而又刺激的扔硬币环节。你想知道,如果硬币正反面朝上的概率相同,每个同学胜利的概率是多少。

Input

第一行两个整数n,m。
接下里n行,每行一个长度为m的字符串,表示第i个同学猜的序列。
1<=n,m<=300

Output

输出n行,第i行表示第i个同学胜利的概率。
输出与标准输出的绝对误差不超过10^-6即视为正确。

Sample Input

3 3
THT
TTH
HTT

Sample Output

0.3333333333
0.2500000000
0.4166666667



#include<bits/stdc++.h>
using namespace std;
#define N 310
#define eps 1e-3
#define For(a,b,c) for(int a=b;a<=c;a++)
int n,m;
double g[N][N];
void guass(){
For(i,1,n){
int p=i;
For(j,i,n)if(abs(g[j][i])>abs(g[p][i]))p=j;
For(j,1,n+1)swap(g[p][j],g[i][j]);
double d=g[i][i];
For(j,1,n+1)g[i][j]/=d;
For(j,1,n){
if(i==j)continue;
double w=g[j][i];
For(k,1,n+1)g[j][k]-=g[i][k]*w;
}
}
For(i,1,n-1)printf("%.10lf\n",g[i][n+1]);
}
int fail[N][N];
int s[N][N];
double p[N];
void init(int id){
For(i,2,m){
int j=fail[id][i-1];
while(j&&s[id][i]!=s[id][j+1])j=fail[id][j];
if(s[id][i]==s[id][j+1])fail[id][i]=j+1;
else fail[id][i]=0;
}
}
double kmp(int ida,int idb){
int j=0;
For(i,1,m){
while(j&&s[idb][i]!=s[ida][j+1])j=fail[ida][j];
if(s[idb][i]==s[ida][j+1])++j;
}
double res=0;
while(j){
res+=p[m-j];
j=fail[ida][j];
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
p[0]=1;For(i,1,m)p[i]=p[i-1]*0.5;
For(i,1,n){
static char c[N];
scanf("%s",c+1);
For(j,1,m)
if(c[j]=='H')s[i][j]=1;
else s[i][j]=0;
init(i);
}
For(i,1,n)For(j,1,n)g[i][j]=kmp(i,j);
For(i,1,n)g[i][n+1]=-p[m];
For(i,1,n)g[n+1][i]=1;
g[n+1][n+2]=1;
n++;
guass();
return 0;
}

BZOJ4820 Sdoi2017 硬币游戏 【概率期望】【高斯消元】【KMP】*的更多相关文章

  1. BZOJ4820 SDOI2017硬币游戏(概率期望+高斯消元+kmp)

    容易想到的做法是建出AC自动机,高斯消元.然而自动机上节点数量是nm的. 注意到我们要求的变量只有n个,考虑将其他不用求的节点合并为一个变量.这个变量即表示随机生成一个串,其不包含任何一个模板串的概率 ...

  2. luoguP4457 [BJOI2018]治疗之雨 概率期望 + 高斯消元

    应该是最后一道紫色的概率了....然而颜色啥也代表不了.... 首先看懂题意: 你现在有$p$点体力,你的体力上限为$n$ 在一轮中, 1.如果你的体力没有满,你有$\frac{1}{m + 1}$的 ...

  3. BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)

    题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...

  4. [HNOI2011]XOR和路径 概率期望 高斯消元

    题面 题解:因为异或不太好处理,,,因此按位来算,这样最后的答案就是每一位上的值乘对应的权值再求和.本着期望要倒退的原则,,,我们设$f[i]$表示从$i$到$n$,xor和为1的概率.那么观察$xo ...

  5. [HNOI2013] 游走 - 概率期望,高斯消元,贪心

    假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...

  6. 4.23 子串 AC自动机 概率期望 高斯消元

    考虑40分. 设出状态 f[i]表示匹配到了i位还有多少期望长度能停止.可以发现这个状态有环 需要高斯消元. 提供一种比较简单的方法:由于期望的线性可加性 可以设状态f[i]表示由匹配到i到匹配到i+ ...

  7. UVA-10828 (概率期望+高斯消元)

    题意: 给个有向图,每个节点等概率转移到它的后继节点,现在问一些节点的期望访问次数; 思路: 对于一个点v,Ev=Ea/d[a]+Eb/d[b]+Ec/d[c];a,b,c是v的前驱节点; 然后按这个 ...

  8. luoguP3232 [HNOI2013]游走 贪心 + 概率期望 + 高斯消元

    首先,题目中的无向简单连通图代表着没有自环,重边... 总分的期望 = 每条边的期望之和...................每条边的期望又可以拆成$u \to v$的期望和$v \to u$的期望 ...

  9. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

随机推荐

  1. 07_MySQL DQL_多表查询_等值内连接

    #6:连接查询/*含义:多表查询,当查询的字段来自多个表 笛卡尔积: 表1,m行:表2,n行: 表1,表2 = m*n行发生原因:表1的每行和表2的n行拼接,形成n行,最终得到m*n行如何避免:增加连 ...

  2. 06_MySQL DQL_分组查询

    # 分组查询/*语法: select 分组函数,列(group by中出现的字段) from 表 [where 筛选条件] group by 分组的列表(单个字段,多个字段,函数,表达式) [havi ...

  3. linux怎么上真正的国际互联网

    1.安装git yum install -y git 2.执行git clone git@github.com:XX-net/XX-Net.git 3.升级python到python 2.7(妈妈说p ...

  4. Log4j 2.0 使用说明(1) 之HelloWorld

    以下是Log4j2.0的类图,以便大家对2.0有一个整体的理解. 就如我们学习任何一个技术一样,这里我们首先写一个Hello World: 1,新建工程TestLog4j 2,下载Log4j 2.0有 ...

  5. 讲一下numpy的矩阵特征值分解与奇异值分解

    1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解:  A = P*B*PT  当然也可以写成 A = QT*B*Q  其中B为对角元为A的特征值的对 ...

  6. PHP运算符-算术运算符、三元运算符、逻辑运算符

    运算符是用来对变量.常量或数据进行计算的符号,它对一个值或一组值执行一个指定的操作.PHP的运算符包括算术运算符.字符串运算符.赋值运算符.位运算符.逻辑运算符.比较运算符.递增或递减运算符.错误控制 ...

  7. mvc 获取 HtmlHelper 表达式值

    public static MvcHtmlString Try<TModel, TProperty>( this HtmlHelper<TModel> htmlHelper, ...

  8. CentOS 7添加应用快捷方式到桌面

    以eclipse为例,编辑下面文件,复制到桌面即可. vi client.desktop [Desktop Entry]Encoding=UTF-8Name=eclipseExec=/home/clo ...

  9. 关于mybatis mapper.xml中的if判断

    场景: 页面上有搜索框进行调节查询,不同搜索框中的内容可以为空. 过程: 点击搜索,前端把参数传给后台,这是后台要把为空的参数过滤掉. 做法: 通常我们在dao层即mapper.xml中进行过滤判断操 ...

  10. python2.7安装requests

    我这里的是linux CentOS7版本 直接执行命令pip install requests 安装即可,如果提示没有pip这个命令要先安装pip 安装步骤如下: 1. 首先检查Linux有没有安装P ...