BZOJ4552 Tjoi2016&Heoi2016排序 【二分+线段树】*
Description
在2016年,佳媛姐姐喜欢上了数字序列。因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他。这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行m次局部排序,排序分为两种:1:(0,l,r)表示将区间[l,r]的数字升序排序2:(1,l,r)表示将区间[l,r]的数字降序排序最后询问第q位置上的数字。
Input
输入数据的第一行为两个整数n和m。n表示序列的长度,m表示局部排序的次数。1 <= n, m <= 10^5第二行为n个整数,表示1到n的一个全排列。接下来输入m行,每一行有三个整数op, l, r, op为0代表升序排序,op为1代表降序排序, l, r 表示排序的区间。最后输入一个整数q,q表示排序完之后询问的位置, \(1 <= q <= n。1 <= n <= 10^5,1 <= m <= 10^5\)
Output
输出数据仅有一行,一个整数,表示按照顺序将全部的部分排序结束后第q位置上的数字。
Sample Input
6 3
1 6 2 5 3 4
0 1 4
1 3 6
0 2 4
3
Sample Output
5
首先发现一个性质,这个答案是可以二分的 这是为啥啊?
然后二分之后我们就可以把所有小于等于mid的数变成0,大于等于mid的数变成1,然后对区间排序就变成了分别赋值0和1,就变成区间修改操作了,于是可以用线段树维护出来,如果发现第k位上是0那么说明l可能可以变大,否则r必须变小
然后就直接二分维护就行了,注意modify的时候边界问题
#include<bits/stdc++.h>
using namespace std;
#define fu(a,b,c) for(int a=b;a<=c;++a)
#define N 100010
#define LD (t<<1)
#define RD (t<<1|1)
int a[N],b[N],n,m,k;
int l[N],r[N],typ[N];
int siz[N<<2],chg[N<<2];
void pushup(int t){siz[t]=siz[LD]+siz[RD];}
void pushdown(int t,int l,int r){
if(l==r)return;
if(chg[t]!=-1){
int mid=(l+r)>>1;
if(l<=mid)chg[LD]=chg[t],siz[LD]=(mid-l+1)*chg[t];
if(mid<r)chg[RD]=chg[t],siz[RD]=(r-mid)*chg[t];
chg[t]=-1;
}
}
void build(int t,int l,int r){
if(l>r)return;
chg[t]=-1;
if(l==r){siz[t]=b[l];return;}
int mid=(l+r)>>1;
build(LD,l,mid);
build(RD,mid+1,r);
pushup(t);
}
void modify(int t,int l,int r,int L,int R,int vl){
if(L>R)return;
if(L<=l&&r<=R){chg[t]=vl,siz[t]=(r-l+1)*vl;return;}
pushdown(t,l,r);
int mid=(l+r)>>1;
if(R<=mid)modify(LD,l,mid,L,R,vl);
else if(L>mid)modify(RD,mid+1,r,L,R,vl);
else modify(LD,l,mid,L,mid,vl),modify(RD,mid+1,r,mid+1,R,vl);
pushup(t);
}
int query(int t,int l,int r,int L,int R){
if(L<=l&&r<=R)return siz[t];
pushdown(t,l,r);
int mid=(l+r)>>1,ans=0;
if(R<=mid)ans=query(LD,l,mid,L,R);
else if(L>mid)ans=query(RD,mid+1,r,L,R);
else ans=query(LD,l,mid,L,mid)+query(RD,mid+1,r,mid+1,R);
pushup(t);
return ans;
}
bool check(int val){
fu(i,1,n)b[i]=(a[i]>=val);
build(1,1,n);
fu(i,1,m){
int s=query(1,1,n,l[i],r[i]);
if(typ[i]==0){
modify(1,1,n,l[i],r[i]-s,0);
modify(1,1,n,r[i]-s+1,r[i],1);
}else{
modify(1,1,n,l[i],l[i]+s-1,1);
modify(1,1,n,l[i]+s,r[i],0);
}
}
return query(1,1,n,k,k);
}
int main(){
scanf("%d%d",&n,&m);
fu(i,1,n)scanf("%d",&a[i]);
fu(i,1,m)scanf("%d%d%d",&typ[i],&l[i],&r[i]);
scanf("%d",&k);
int l=1,r=n,ans=0;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid))l=mid+1,ans=mid;
else r=mid-1;
}
printf("%d",ans);
return 0;
}
BZOJ4552 Tjoi2016&Heoi2016排序 【二分+线段树】*的更多相关文章
- [bzoj4552][Tjoi2016&Heoi2016]排序-二分+线段树
Brief Description DZY有一个数列a[1..n],它是1∼n这n个正整数的一个排列. 现在他想支持两种操作: 0, l, r: 将a[l..r]原地升序排序. 1, l, r: 将a ...
- 【BZOJ4552】[Tjoi2016&Heoi2016]排序 二分+线段树
[BZOJ4552][Tjoi2016&Heoi2016]排序 Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ...
- bzoj 4552: [Tjoi2016&Heoi2016]排序——二分+线段树
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...
- [BZOJ4552][TJOI2016&&HEOI2016]排序(二分答案+线段树/线段树分裂与合并)
解法一:二分答案+线段树 首先我们知道,对于一个01序列排序,用线段树维护的话可以做到单次排序复杂度仅为log级别. 这道题只有一个询问,所以离线没有意义,而一个询问让我们很自然的想到二分答案.先二分 ...
- bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序
http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...
- BZOJ4552 [Tjoi2016&Heoi2016]排序 【二分 + 线段树】
题目链接 BZOJ4552 题解 之前去雅礼培训做过一道题,\(O(nlogn)\)维护区间排序并能在线查询 可惜我至今不能get 但这道题有着\(O(nlog^2n)\)的离线算法 我们看到询问只有 ...
- BZOJ4552:[TJOI2016&HEOI2016]排序(线段树,二分)
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个难题是这样子的:给出一个1到n的全排列,现在对这 ...
- 2018.08.01 BZOJ4552: [Tjoi2016&Heoi2016]排序(二分+线段树)
传送门 线段树简单题. 二分答案+线段树排序. 实际上就是二分答案mid" role="presentation" style="position: relat ...
- [BZOJ4552][Tjoi2016&Heoi2016]排序(二分答案+线段树)
二分答案mid,将>=mid的设为1,<mid的设为0,这样排序就变成了区间修改的操作,维护一下区间和即可 然后询问第q个位置的值,为1说明>=mid,以上 时间复杂度O(nlog2 ...
随机推荐
- ”由于没有远程桌面授权服务器可以提供许可证,远程会话被中断“的解决方案
由于windows server 2012 R2 Datacenter 安装了 远程桌面角色,但是这个角色是120天免费的,需要购买授权的. 解决方案: 删除这个角色,就可以正常进行远程桌面连接了.但 ...
- Outlook.com 系列邮箱 POP3 及 IMAP 设置方法
支持 Exchange ActiveSync 的应用 有了 EAS,你可以立即获取电子邮件,以及在一个位置查看所有文件夹.日历和联系人. 如果你的电子邮件应用支持Exchange ActiveSync ...
- 从SynchronizedCollection说起
SynchronizedCollection简介 SynchronizedCollection是Collections下所有现场安全集合的父类,并发安全集合可以分为三类,一种是比较老的实现,例如vec ...
- angular-cli 工程中使用scss文件
angular/cli支持使用sass 新建工程: 如果是新建一个angular工程采用sass: ng new My_New_Project --style=sass 这样所有样式的地方都将采用sa ...
- 配置Eclipse可以查看JDK类库源码
一.配置方法 配置Eclipse可以查看JDK类库源码 Window->Preferences->Java->Installed JREs 若没有JRE,需要自己添加进来,有的话,点 ...
- Spring框架中,在工具类或者普通Java类中调用service或dao
spring注解的作用: 1.spring作用在类上的注解有@Component.@Responsity.@Service以及@Controller:而@Autowired和@Resource是用来修 ...
- 25.大白话说java并发工具类-CountDownLatch,CyclicBarrier,Semaphore,Exchanger
1. 倒计时器CountDownLatch 在多线程协作完成业务功能时,有时候需要等待其他多个线程完成任务之后,主线程才能继续往下执行业务功能,在这种的业务场景下,通常可以使用Thread类的join ...
- find命令中选项-path和-prune的使用
在Windows中可以在某些路径中查找文件,也可以设定不在某些路径中查找文件,下面用Linux中的find的命令结合其-path -prune参数来看看在Linux中怎么实现此功能.假如在当前目录下查 ...
- 栈之括号匹配问题(java实现)
假设表达式中只允许两种括号:().{}:正确表达顺序为:()或{}或({})或{({}{})}的形势:如{(}或(})或({)}的表达形势均不对.算法的设计思想: 出现左括弧则进栈: 出现右括弧则首先 ...
- (2) iOS开发之UI处理-UILabel篇
我们经常要根据内容去动态计算控件的高度,比如一个UILabel控件,常常要显示多行内容,并且计算出总高度,如果每个UILabel要多行显示,都要写这么一段代码是非常痛苦的,看代码如下: 我想大 ...